cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A000008 Number of ways of making change for n cents using coins of 1, 2, 5, 10 cents.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 341, 356, 377, 392, 413, 434, 455, 476, 497, 518, 546
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 5, and 10.
There is a unique solution to this puzzle: "There are a prime number of ways that I can make change for n cents using coins of 1, 2, 5, 10 cents; but a semiprime number of ways that I can make change for n-1 cents and for n+1 cents." There is a unique solution to this related puzzle: "There are a prime number of ways that I can make change for n cents using coins of 1, 2, 5, 10 cents; but a 3-almost prime number of ways that I can make change for n-1 cents and for n+1 cents." - Jonathan Vos Post, Aug 26 2005

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 8*x^9 + 11*x^10 + ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000008 = p [1,2,5,10] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Magma
    [#RestrictedPartitions(n,{1,2,5,10}):n in [0..60]]; // Marius A. Burtea, May 07 2019
  • Maple
    M:= Matrix(18, (i,j)-> if(i=j-1 and i<17) or (j=1 and member(i, [2,5,10,17,18])) or (i=18 and j=18) then 1 elif j=1 and member(i, [7,12,15]) then -1 else 0 fi); a:= n-> (M^(n+1))[18,1]; seq(a(n), n=0..51); # Alois P. Heinz, Jul 25 2008
    # second Maple program:
    a:= proc(n) local m, r; m := iquo(n, 10, 'r'); r:= r+1; ([23, 26, 35, 38, 47, 56, 65, 74, 83, 92][r]+ (3*r+ 24+ 10*m) *m) *m/6+ [1, 1, 2, 2, 3, 4, 5, 6, 7, 8][r] end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 05 2008
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / ((1 - x)(1 - x^2)(1 - x^5)(1 - x^10)), {x, 0, n}]
    a[n_, d_] := SeriesCoefficient[1/(Times@@Map[(1-x^#)&, d]), {x, 0, n}] (* general case for any set of denominations represented as a list d of coin values in cents *)
    Table[Length[FrobeniusSolve[{1,2,5,10},n]],{n,0,70}] (* Harvey P. Dale, Apr 02 2012 *)
    LinearRecurrence[{1, 1, -1, 0, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, -1, 1, 1, -1}, {1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28}, 100] (* Vincenzo Librandi, Feb 10 2016 *)
    a[ n_] := Quotient[ With[{r = Mod[n, 10, 1]}, n^3 + 27 n^2 + (191 + 3 {4, 13, 0, 5, 8, 9, 8, 5, 0, 13}[[r]]) n + 25], 600] + 1; (* Michael Somos, Mar 06 2018 *)
    Table[Length@IntegerPartitions[n,All,{1,2,5,10}],{n,0,70}] (* Giorgos Kalogeropoulos, May 07 2019 *)
  • Maxima
    a(n):=floor(((n+17)*(2*n^2+20*n+81)+15*(n+1)*(-1)^n+120*((floor(n/5)+1)*((1+(-1)^mod(n,5))/2-floor(((mod(n,5))^2)/8))))/1200); /* Tani Akinari, Jun 21 2013 */
    
  • PARI
    {a(n) = if( n<-17, -a(-18-n), if( n<0, 0, polcoeff( 1 / ((1 - x) * (1 - x^2) * (1 - x^5) * (1 - x^10)) + x * O(x^n), n)))}; /* Michael Somos, Apr 01 2003 */
    
  • PARI
    Vec( 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)) + O(x^66) ) \\ Joerg Arndt, Oct 02 2013
    
  • PARI
    {a(n) = my(r = (n-1)%10 + 1); (n^3 + 27*n^2 + (191 + 3*[4, 13, 0, 5, 8, 9, 8, 5, 0, 13][r])*n + 25)\600 + 1}; /* Michael Somos, Mar 06 2018 */
    

Formula

G.f.: 1 / ((1 - x) * (1 - x^2) * (1 - x^5) * (1 - x^10)). - Michael Somos, Nov 17 1999
a(n) - a(n-1) = A025810(n). - Michael Somos, Dec 15 2002
a(n) = a(n-2) + a(n-5) - a(n-7) + a(n-10) - a(n-12) - a(n-15) + a(n-17) + 1. - Michael Somos, Apr 01 2003
a(n) = -a(-18-n). - Michael Somos, Apr 01 2003
a(n) = (q+1)*(h(n) - q*(3n-10q+7)/6) with q = floor(n/10) and h(n) = A000115(n) = round((n+4)^2/20). See link "Derivation of formulas". - Gerhard Kirchner, Feb 10 2017
a(n) = floor((2*n^3 + 54*n^2 + 421*n + 15*n*(-1)^n + 24*n * ((-1)^[(n mod 5)>2] - [(n mod 5)=1]) + 1248)/1200). - Hoang Xuan Thanh, Jun 27 2025

A001300 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 cents.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Number of partitions of n into parts 1, 5, 10, 25, and 50. - Joerg Arndt, May 10 2014
a(n) = A001299(n) for n < 50; a(n) = A169718(n) for n < 100. - Reinhard Zumkeller, Dec 15 2013

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1, Problems 1 and 2.

Crossrefs

Programs

  • Haskell
    a001300 = p [1,5,10,25,50] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 15 2013
    
  • Maple
    1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50));
  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)(1 - x^25)(1 - x^50)), {x, 0, 65} ], x ]
  • PARI
    a(n)=floor(((n\5)^4+38*(n\5)^3+476*(n\5)^2+2185*(n\5)+3735)/2400+(n\5+1)*(-1)^(n\5)/160+(n\5\5+1)*[0,0,1,0,-1][n\5%5+1]/10) \\ Tani Akinari, May 10 2014

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)).

A053344 Minimal number of coins needed to pay n cents using coins of denominations 1, 5, 10, 25 cents.

Original entry on oeis.org

1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 3, 4, 5, 6, 7, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 5, 6, 7, 8, 9, 4
Offset: 1

Views

Author

Jean Fontaine (jfontain(AT)odyssee.net), Jan 06 2000

Keywords

Examples

			a(57) = 5 because to pay 57 cents at least 5 coins are needed: 2 of 25 cents, 1 of 5 cents and 2 of 1 cent.
		

Crossrefs

Programs

  • Magma
    I:=[1,2,3,4,1,2,3,4,5,1,2,3,4,5,2,3,4,5,6,2,3,4,5,6,1,2]; [n le 26 select I[n] else Self(n-1) +Self(n-25) - Self(n-26): n in [1..70]]; // G. C. Greubel, May 31 2018
    
  • Mathematica
    f[n_]:=Floor[n/25]+Floor[Mod[n,25]/10]+Floor[Mod[Mod[n,25],10]/5]+Mod[Mod[Mod[n,25],10],5]; lst={};Do[AppendTo[lst,f[n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 28 2009 *)
    Table[Min[Total/@FrobeniusSolve[{1,5,10,25},n]],{n,100}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1},{1,2,3,4,1,2,3,4,5,1,2,3,4,5,2,3,4,5,6,2,3,4,5,6,1,2},100] (* Harvey P. Dale, Aug 14 2014 *)
  • PARI
    Vec(-x*(5*x^24 -x^23 -x^22 -x^21 -x^20 +4*x^19 -x^18 -x^17 -x^16 -x^15 +3*x^14 -x^13 -x^12 -x^11 -x^10 +4*x^9 -x^8 -x^7 -x^6 -x^5 +3*x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^20 +x^15 +x^10 +x^5 +1)) + O(x^100)) \\ Colin Barker, Jan 10 2015
    
  • Python
    def A053344(n):
        a, b = divmod(n,25)
        c, d = divmod(b,10)
        return a+c+sum(divmod(d,5)) # Chai Wah Wu, Nov 08 2022

Formula

a(n) = floor(n/25) + floor([n mod 25]/10) + floor([{n mod 25} mod 10]/5) + ([n mod 25] mod 10) mod 5.
G.f.: -x*(5*x^24 -x^23 -x^22 -x^21 -x^20 +4*x^19 -x^18 -x^17 -x^16 -x^15 +3*x^14 -x^13 -x^12 -x^11 -x^10 +4*x^9 -x^8 -x^7 -x^6 -x^5 +3*x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^20 +x^15 +x^10 +x^5 +1)). - Colin Barker, Jan 10 2015

A169718 Number of ways of making change for n cents using coins of 1, 5, 10, 25, 50 and 100 cents.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 13, 13, 13, 13, 13, 18, 18, 18, 18, 18, 24, 24, 24, 24, 24, 31, 31, 31, 31, 31, 39, 39, 39, 39, 39, 50, 50, 50, 50, 50, 62, 62, 62, 62, 62, 77, 77, 77, 77, 77, 93, 93, 93, 93, 93, 112, 112, 112, 112, 112, 134, 134
Offset: 0

Views

Author

N. J. A. Sloane, Apr 20 2010

Keywords

Comments

a(n) = A001300(n) for n < 100; a(n) = A001299(n) for n < 50. - Reinhard Zumkeller, Dec 15 2013
Number of partitions of n into parts 1, 5, 10, 25, 50, and 100. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Crossrefs

Programs

  • Haskell
    a169718 = p [1,5,10,25,50,100] where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Dec 15 2013
  • Mathematica
    Table[Length[FrobeniusSolve[{1,5,10,25,50,100},n]],{n,0,80}] (* or *) CoefficientList[Series[1/((1-x)(1-x^5)(1-x^10)(1-x^25)(1-x^50)(1-x^100)),{x,0,80}],x] (* Harvey P. Dale, Dec 25 2011 *)

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)*(1-x^100)).

A187243 Number of ways of making change for n cents using coins of 1, 5, and 10 cents.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 9, 9, 9, 9, 9, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 30, 30, 30, 30, 30, 36, 36, 36, 36, 36, 42, 42, 42, 42, 42, 49, 49, 49, 49, 49, 56, 56, 56, 56, 56, 64, 64, 64, 64, 64, 72, 72, 72, 72, 72
Offset: 0

Views

Author

T. D. Noe, Mar 07 2011

Keywords

Comments

a(n) is the number of partitions of n into parts 1, 5, and 10. - Joerg Arndt, Feb 02 2017
From Gerhard Kirchner, Jan 25 2017: (Start)
There is a simple recurrence for solving such problems given coin values 1 = c(1) < c(2) < ... < c(k).
Let f(n, j), 1 < j <= k, be the number of ways of making change for n cents with coin values c(i), 1 <= i <= j. Then any number m of c(j)-coins with 0 <= m <= floor(n/c(j)) can be used, and the remaining amount of change to be made using coins of values smaller than c(j) will be n - m*c(j) cents. This leads directly to the recurrence formula with a(n) = f(n, k).
For k = 3 with c(1) = 1, c(2) = 5, c(3) = 10, the recurrence can be reduced to an explicit formula; see link "Derivation of formulas".
By the way, a(n) is also the number of ways of making change for n cents using coins of 2, 5, 10 cents and at most one 1-cent coin. That is because any coin combination is, as in the original problem, fixed by the numbers of 5-cent and 10-cent coins.
(End)

Examples

			From _Gerhard Kirchner_, Jan 25 2017: (Start)
Recurrence:
a(11)  = f(11, 3) = f(11 - 0, 2) + f(11 - 10, 2)
       = f(11 - 0, 1) + f(11 - 5, 1) + f(11 - 10, 1) + f(1, 2)
       = 1 + 1 + 1 + 1 = 4.
Explicitly: a(79) = (7 + 1)*(7 + 1 + 1) = 72.
(End)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[ 1 / ((1 - x)(1 - x^5)(1 - x^10)), {x, 0, 75} ], x ]
  • PARI
    Vec( 1/((1-x)*(1-x^5)*(1-x^10))+O(x^99)) \\ Charles R Greathouse IV, Aug 22 2011
    
  • PARI
    a(n)=(n^2+16*n+97+10*(n\5+1)*(5*(n\5)+2-n))\100 \\ Tani Akinari, Sep 10 2015
    
  • PARI
    a(n) = {my(q=n\10, s=(n%10)\5); (q+1)*(q+1+s); } \\ (Kirchner's explicit formula) Joerg Arndt, Feb 02 2017

Formula

G.f.: 1/((1-x)*(1-x^5)*(1-x^10)).
From Gerhard Kirchner, Jan 25 2017: (Start)
General recurrence: f(n, 1) = 1; j > 1: f(0, j) = 1 or f(n, j) = Sum_{m=0..floor(n/c(j))} f(n-m*c(j), j-1);
a(n) = f(n, k).
Note: f(n, j) = f(n, j-1) for n < c(j) => f(1, j) = 1.
Explicit formula:
a(n) = (q+1)*(q+1+s) with q = floor(n/10) and s = floor((n mod 10)/5). (End)
a(n) = A002620(A002266(n)+2) = floor((floor(n/5) + 2)^2 / 4). - Hoang Xuan Thanh, Jun 26 2025

A174140 Numbers congruent to k mod 25, where 10 <= k <= 24.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 110, 111, 112, 113, 114, 115, 116
Offset: 1

Views

Author

Rick L. Shepherd, Mar 09 2010

Keywords

Comments

Numbers whose partition into parts of sizes 1, 5, 10, and 25 having a minimal number of parts includes at least one part of size 10.
For each number the partition is unique.
Complement of A174141.
Amounts in cents requiring at least one dime when the minimal number of coins is selected from pennies, nickels, dimes, and quarters (whether usage of bills for whole-dollar amounts is permitted or not).

Crossrefs

Cf. A174138, A174139, A174141, A047201 (requires at least one part of size 1 (penny)), A008587, A053344 (minimal number of parts), A001299 (number of all such partitions).

Programs

  • Mathematica
    Flatten[Table[Range[10,24]+25n,{n,0,5}]] (* Harvey P. Dale, Jun 12 2012 *)
  • PARI
    Vec(x*(10 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15) / ((1 - x)^2*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)) + O(x^60)) \\ Colin Barker, Oct 25 2019

Formula

a(n+15) = a(n) + 25 for n >= 1.
From Colin Barker, Oct 25 2019: (Start)
G.f.: x*(10 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15) / ((1 - x)^2*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)*(1 - x + x^3 - x^4 + x^5 - x^7 + x^8)).
a(n) = a(n-1) + a(n-15) - a(n-16) for n>16.
(End)

A174141 Numbers congruent to k mod 25, where 0 <= k <= 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 150, 151, 152, 153, 154
Offset: 1

Views

Author

Rick L. Shepherd, Mar 09 2010

Keywords

Comments

Numbers whose partition into parts of sizes 1, 5, 10, and 25 having a minimal number of parts does not include a part of size 10.
For each number the partition is unique.
Complement of A174140.
Amounts in cents not including a dime when the minimal number of coins is selected from pennies, nickels, dimes, and quarters (whether usage of bills for whole-dollar amounts is permitted or not).

Crossrefs

Cf. A174138, A174139, A174140, A047201 (requires at least one part of size 1 (penny)), A008587, A053344 (minimal number of parts), A001299 (number of all such partitions).

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,7,8,9,25},70] (* Harvey P. Dale, May 30 2014 *)

Formula

a(n+10) = a(n) + 25 for n >= 1.
a(n)= +a(n-1) +a(n-10) -a(n-11). G.f. x^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+16*x^9) / ( (1+x)*(1+x+x^2+x^3+x^4)*(x^4-x^3+x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011

A351725 Table T(n,k) read by rows: number of partitions of n into k parts of size 1, 5, 10 or 25.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

R. J. Mathar, Feb 17 2022

Keywords

Comments

Multiset transform of the binary sequence b(n)=1,1,0,0,0,1,0,0,0,0,1,0,... with g.f. 1 + x + x^5 + x^10 + x^25, where b(.) is the Inverse Euler Transform of A001299.

Examples

			T(30,6)=2 counts the partitions 5+5+5+5+5+5 = 1+1+1+1+1+25.
The triangle starts at row n=0 and has columns k=0..n:
1
0 1
0 0 1
0 0 0 1
0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1
0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
0 0 1 1 1 1 2 0 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1
		

Crossrefs

Cf. A001299 (row sums), A351740.
Column k=0 gives A000007.
Main diagonal gives A000012.
T(2n,n) gives A351742.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n, b(n, i-1)+
         (p-> `if`(p>n, 0, expand(x*b(n-p, i))))([1, 5, 10, 25][i]))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 4)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Feb 17 2022
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n, b[n, i - 1] +
         Function[p, If[p > n, 0, Expand[x*b[n-p, i]]]][{1, 5, 10, 25}[[i]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 4]];
    Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)

Formula

T(n,0) = 0 if k>0.
T(n,n) = 1.
Sum_{k=0..n} k * T(n,k) = A351740(n). - Alois P. Heinz, Feb 17 2022

A160551 Number of unordered ways of making change for n dollars using coins of denominations 1, 5, 10, and 25.

Original entry on oeis.org

1, 242, 1463, 4464, 10045, 19006, 32147, 50268, 74169, 104650, 142511, 188552, 243573, 308374, 383755, 470516, 569457, 681378, 807079, 947360, 1103021, 1274862, 1463683, 1670284, 1895465, 2140026, 2404767, 2690488, 2997989, 3328070, 3681531, 4059172, 4461793
Offset: 0

Views

Author

Lee A. Newberg, May 18 2009, Jun 15 2009

Keywords

Comments

a(n) is the number of distinct quadruplets (p, k, d, q) of nonnegative integers satisfying p + 5k + 10d + 25q = 100n.

Examples

			There are four ways to make $0.10: (1) 10 pennies, (2) 5 pennies and 1 nickel, (3) 2 nickels, and (4) 1 dime.
		

Crossrefs

Cf. A001299.

Programs

  • Maple
    f := 1/(1-x)/(1-x^5)/(1-x^10)/(1-x^25); a := n -> (convert(series(f,x,100*n+1),polynom)-convert(series(f,x,100*n),polynom)) /x^(100*n);
    a := n -> (3 + 53*n + 270*n^2 + 400*n^3) / 3;
  • PARI
    a(n) = {(3 + 53*n + 270*n^2 + 400*n^3) / 3} \\ Andrew Howroyd, Feb 02 2020

Formula

a(n) = [x^(100*n)] 1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)).
a(n) = (3 + 53*n + 270*n^2 + 400*n^3) / 3.
From Alois P. Heinz, Oct 08 2022: (Start)
a(n) = A001299(100*n).
G.f.: (60*x^3+501*x^2+238*x+1)/(x-1)^4. (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 02 2020

A174138 Numbers congruent to {5,6,7,8,9,15,16,17,18,19} mod 25.

Original entry on oeis.org

5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 55, 56, 57, 58, 59, 65, 66, 67, 68, 69, 80, 81, 82, 83, 84, 90, 91, 92, 93, 94, 105, 106, 107, 108, 109, 115, 116, 117, 118, 119, 130, 131, 132, 133, 134, 140, 141, 142, 143, 144, 155, 156, 157
Offset: 1

Views

Author

Rick L. Shepherd, Mar 09 2010

Keywords

Comments

Numbers whose partition into parts of sizes 1, 5, 10, and 25 having a minimal number of parts includes a part of size 5.
For each number the partition is unique and exactly one part is of size 5.
Complement of A174139.
Amounts in cents requiring a nickel when the minimal number of coins is selected from pennies, nickels, dimes, and quarters (whether usage of bills for whole-dollar amounts is permitted or not).
For each n >= 0, floor(n/25) parts of size 25 (quarters) occur in the partition with minimal number of these parts (regardless of whether partition includes part of size 5).

Examples

			As 15 = 10 + 5, 15 is a term since 5 is included and all other candidate partitions have more than two parts. Similarly, as 30 = 25 + 5, 30 is a term. However, 45 = 25 + 10 + 10 is not a term as it contains no part of size 5.
		

Crossrefs

Cf. A174139, A174140, A174141, A047201 (requires at least one part of size 1 (penny)), A008587, A053344 (minimal number of parts), A001299 (number of all such partitions).

Programs

  • Magma
    [n : n in [1..200] | n mod 25 in [5, 6, 7, 8, 9, 15, 16, 17, 18, 19]]; // Vincenzo Librandi, Mar 22 2015
  • Mathematica
    Table[n + 9 + 5 Floor[(Floor[(n - 1)/5] - 1)/2] + 10 Floor[Floor[(n - 1)/5]/2], {n, 100}] (* Wesley Ivan Hurt, Mar 22 2015 *)

Formula

a(10+n) = a(n) + 25 for n >= 1.
a(n) = a(n-1) + a(n-10) - a(n-11). G.f.: x*(5+x+x^2+x^3+x^4+6*x^5+x^6+x^7+x^8+x^9+6*x^10) / ( (1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
a(n) = n+9+5*floor((floor((n-1)/5)-1)/2)+10*floor(floor((n-1)/5)/2). - Wesley Ivan Hurt, Mar 22 2015
Showing 1-10 of 18 results. Next