cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000115 Denumerants: Expansion of 1/((1-x)*(1-x^2)*(1-x^5)).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18, 20, 22, 24, 26, 29, 31, 34, 36, 39, 42, 45, 48, 51, 54, 58, 61, 65, 68, 72, 76, 80, 84, 88, 92, 97, 101, 106, 110, 115, 120, 125, 130, 135, 140, 146, 151, 157, 162, 168, 174, 180, 186, 192, 198, 205, 211, 218, 224, 231, 238
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, or 5.
First differences are in A008616. First differences of A001304. Pairwise sums of A008720.

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,2,5).
  • M. Jeger, Ein partitions problem ..., Elemente de Math., 13 (1958), 97-120.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 152.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Round((n+4)^2/20): n in [0..70]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    1/((1-x)*(1-x^2)*(1-x^5)): seq(coeff(series(%, x, n+1), x, n), n=0..65);
    # next Maple program:
    s:=proc(n) if n mod 5 = 0 then RETURN(1); fi; if n mod 5 = 1 then RETURN(0); fi; if n mod 5 = 2 then RETURN(1); fi; if n mod 5 = 3 then RETURN(-1); fi; if n mod 5 = 4 then RETURN(-1); fi; end: f:=n->(2*n^2+16*n+27+5*(-1)^n+8*s(n))/40: seq(f(n), n=0..65);  # from Jeger's paper
  • Mathematica
    nn=50;CoefficientList[Series[1/(1-x)/(1-x^2)/(1-x^5),{x,0,nn}],x]  (* Geoffrey Critzer, Jan 20 2013 *)
    LinearRecurrence[{1,1,-1,0,1,-1,-1,1},{1,1,2,2,3,4,5,6},70] (* Harvey P. Dale, Sep 27 2019 *)
  • PARI
    a(n)=(n^2+8*n+26)\20 \\ Charles R Greathouse IV, Jun 23 2011

Formula

a(n) = round((n+4)^2/20).
a(n) = a(-8 - n) for all n in Z. - Michael Somos, May 28 2014

A001362 Number of ways of making change for n cents using coins of 1, 2, 4, 10 cents.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, 18, 18, 24, 24, 31, 31, 39, 39, 49, 49, 60, 60, 73, 73, 87, 87, 103, 103, 121, 121, 141, 141, 163, 163, 187, 187, 213, 213, 242, 242, 273, 273, 307, 307, 343, 343, 382, 382, 424, 424, 469, 469, 517, 517, 568, 568, 622, 622
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 4, and 10. - Joerg Arndt, Sep 05 2014

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 316.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, NY, 2 vols., 1972, Vol. 1, p. 1.

Crossrefs

Twice A001304.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^4)/(1-x^10): seq(coeff(series(%,x,n+1),x,n), n=0..80);
  • Mathematica
    nn = 1000; CoefficientList[Series[1/((1 - x^1) (1 - x^2) (1 - x^4) (1 - x^10)), {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)
    Table[Length[FrobeniusSolve[{1,2,4,10},n]],{n,0,60}] (* Harvey P. Dale, May 20 2021 *)
  • PARI
    a(n)=floor((n\2+8)*(2*(n\2)^2+11*(n\2)+18)/120) \\ Tani Akinari, May 14 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^10)).

A028291 Expansion of 1/((1-x)^2(1-x^2)(1-x^3)(1-x^5)) in powers of x.

Original entry on oeis.org

1, 2, 4, 7, 11, 17, 25, 35, 48, 64, 84, 108, 137, 171, 211, 258, 312, 374, 445, 525, 616, 718, 832, 959, 1100, 1256, 1428, 1617, 1824, 2050, 2297, 2565, 2856, 3171, 3511, 3878, 4273, 4697, 5152, 5639, 6160, 6716, 7309, 7940, 8611, 9324, 10080, 10881, 11729
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Partitions of n into parts 1, 2, 3, and 5. - Joerg Arndt, Jun 05 2014

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 17*x^5 + 25*x^6 + 35*x^7 + ...
		

References

  • Susan Elle, Ore extensions of global dimension 5, Abstract 1110-17-204, Abstracts Amer. Math. Soc., 36 (No. 2, 2015), p. 822.

Crossrefs

Programs

  • Mathematica
    a[ n_] := Quotient[n (n + 12) (n^2 + 12 n + 52), 720] + 1; (* Michael Somos, Jun 05 2014 *)
    a[ n_] := With[{m = If[ n < 0, -12 - n, n]}, SeriesCoefficient[ 1 / ((1 - x)^2*(1 - x^2)*(1 - x^3)*(1 - x^5)), {x, 0, m}]]; (* Michael Somos, Jun 05 2014 *)
    Table[Round[(n + 1)*(n^3 + 23*n^2 + 173*n + 451)/720], {n, 0, 40}] (* Wesley Ivan Hurt, Jun 05 2014 *)
    LinearRecurrence[{2,0,-1,-1,1,0,-1,1,1,0,-2,1},{1,2,4,7,11,17,25,35,48,64,84,108},50] (* Harvey P. Dale, Sep 06 2022 *)
  • PARI
    Vec(1/((1-x)^2*(1-x^2)*(1-x^3)*(1-x^5))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • PARI
    {a(n) = n * (n+12) * (n^2 + 12*n + 52) \ 720 + 1}; /* Michael Somos, Jun 05 2014 */
    
  • PARI
    {a(n) = if( n<0, n = -12 - n); polcoeff( 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^3) * (1 - x^5)) + x * O(x^n), n)}; /* Michael Somos, Jun 05 2014 */

Formula

a(n) = round((n+1)*(n^3+23*n^2+173*n+451)/720). - Tani Akinari, Jun 05 2014
a(n) - 2*a(n-1) + a(n+3) + a(n+4) - 2*a(n+6) + a(n+7) = 1 if n == 3 (mod 5) else 0. - Michael Somos, Jun 05 2014
a(n) = a(-12 - n) for all n in Z. - Michael Somos, May 14 2015
a(n) - a(n-1) = A008669(n), a(n) - a(n-3) = A001304(n) for all n in Z. - Michael Somos, May 14 2015
Euler transform of length 5 sequence [ 2, 1, 1, 0, 1]. - Michael Somos, May 14 2015

A177239 Partial sums of round(n^2/20).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 49, 60, 73, 87, 103, 121, 141, 163, 187, 213, 242, 273, 307, 343, 382, 424, 469, 517, 568, 622, 680, 741, 806, 874, 946, 1022, 1102, 1186, 1274, 1366, 1463, 1564, 1670, 1780, 1895, 2015, 2140
Offset: 0

Views

Author

Mircea Merca, Dec 10 2010

Keywords

Comments

The round function is defined here by round(x) = floor(x + 1/2).
There are several sequences of integers of the form round(n^2/k) for whose partial sums we can establish identities as following (only for k = 2, ..., 9, 11, 12, 13, 16, 17, 19, 20, 28, 29, 36, 44).

Examples

			a(20) = 0 + 0 + 0 + 0 + 1 + 1 + 2 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 10 + 11 + 13 + 14 + 16 + 18 + 20 = 141.
		

Crossrefs

Programs

  • Magma
    [Floor((n+4)*(2*n^2-5*n+6)/120): n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
    
  • Maple
    seq(round(n*(n-2)*(2*n+7)/120),n=0..50)
  • Mathematica
    f[n_] := Round[n^2/20]; Accumulate@ Array[f, 51, 0] (* Robert G. Wilson v, Dec 20 2010 *)
  • SageMath
    [(n+4)*(2*n^2 -5*n +6)//120 for n in range(56)] # G. C. Greubel, Apr 27 2024

Formula

a(n) = A001304(n-4).
a(n) = round((2*n+1)*(2*n^2 + 2*n - 15)/240).
a(n) = floor((n+4)*(2*n^2 - 5*n + 6)/120).
a(n) = ceiling((n-3)*(2*n^2 + 9*n + 13)120).
a(n) = round(n*(n-2)*(2*n+7)/120).
a(n) = a(n-20) + (n+1)*(n-20) + 141, n > 19.
From R. J. Mathar, Dec 12 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) + a(n-5) - 2*a(n-6) + 2*a(n-8) - a(n-9).
G.f.: x^4 / ( (1+x)*(1+x+x^2+x^3+x^4)*(1-x)^4 ). (End)
Showing 1-4 of 4 results.