cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000118 Number of ways of writing n as a sum of 4 squares; also theta series of four-dimensional cubic lattice Z^4.

Original entry on oeis.org

1, 8, 24, 32, 24, 48, 96, 64, 24, 104, 144, 96, 96, 112, 192, 192, 24, 144, 312, 160, 144, 256, 288, 192, 96, 248, 336, 320, 192, 240, 576, 256, 24, 384, 432, 384, 312, 304, 480, 448, 144, 336, 768, 352, 288, 624, 576, 384, 96, 456, 744, 576, 336, 432, 960, 576, 192
Offset: 0

Views

Author

Keywords

Comments

a^2 + b^2 + c^2 + d^2 is one of Ramanujan's 54 universal quaternary quadratic forms. - Michael Somos, Apr 01 2008
a(n) is also the number of quaternions q = a + bi + cj + dk, where a, b, c, d are integers, such that a^2 + b^2 + c^2 + d^2 = n (i.e., so that n is the norm of q). These are Lipschitz integer quaternions. - Rick L. Shepherd, Mar 27 2009
Number 5 and 35 of the 126 eta-quotients listed in Table 1 of Williams 2012. - Michael Somos, Nov 10 2018
This is the convolution square of A004018. - Pierre Abbat, May 15 2023

Examples

			G.f. = 1 + 8*q + 24*q^2 + 32*q^3 + 24*q^4 + 48*q^5 + 96*q^6 + 64*q^7 + 24*q^8 + ...
a(1)=8 counts 1 = 1^2 + 0^2 + 0^2 + 0^2 = 0^2 + 1^2 + 0^2 + 0^2 = 0^2 + 0^2 + 1^2 + 0^2 = 0^2 + 0^2 + 0^2 + 1^2 and 4 more sums where 1^2 is replaced by (-1)^2. - _R. J. Mathar_, May 16 2023
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996, ch. 8, pp. 231-2.
  • J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattices and Groups, Springer-Verlag, p. 108, Eq. (49).
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.28). See also top of p. 94.
  • E. Freitag and R. Busam, Funktionentheorie 1, 4. Auflage, Springer, 2006, p. 392.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314, Theorem 386.
  • Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of integers, Chapman & Hall/CRC, 2006, p. 29.
  • S. Ramanujan, Collected Papers, Chap. 20, Cambridge Univ. Press 1927 (Proceedings of the Camb. Phil. Soc., 19 (1917) 11-21).

Crossrefs

Row d=4 of A122141 and of A319574, 4th column of A286815.
For number of solutions to a^2+b^2+c^2+k*d^2=n for k=1, 2, 3, 4, 5, 6, 7, 8, 12, see A000118, A236928, A236926, A236923, A236930, A236931, A236932, A236927, A236933.

Programs

  • Haskell
    a000118 0 = 1
    a000118 n = 8 * a046897 n  -- Reinhard Zumkeller, Aug 12 2015
    
  • Julia
    # JacobiTheta3 is defined in A000122.
    A000118List(len) = JacobiTheta3(len, 4)
    A000118List(57) |> println # Peter Luschny, Mar 12 2018
    
  • MATLAB
    a(n) = 8 * sum(find(mod(n,1:n)==0 & mod(1:n,4))) + (n==0) % David Mellinger, Aug 04 2025
  • Magma
    A := Basis( ModularForms( Gamma0(4), 2), 57); A[1] + 8*A[2]; /* Michael Somos, Aug 21 2014 */
    
  • Maple
    (add(q^(m^2),m=-10..10))^4; seq(coeff(%,q,n), n=0..50);
    # Alternative:
    A000118list := proc(len) series(JacobiTheta3(0, x)^4, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000118list(57); # Peter Luschny, Oct 02 2018
  • Mathematica
    Table[SquaresR[4, n], {n, 0, 46}]
    a[ n_] :=  SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 8 Sum[ If[ Mod[ d, 4] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, Feb 20 2015 *)
    QP = QPochhammer; CoefficientList[QP[-q]^8/QP[q^2]^4 + O[q]^60, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 8 * sumdiv( n, d, if( d%4, d)))}; /* Michael Somos, Apr 01 2003 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^2))^4, n))}; /* Michael Somos, Apr 01 2008 */
    
  • PARI
    q='q+O('q^66); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^4) /* Joerg Arndt, Apr 08 2013 */
    
  • PARI
    a(n) = 8*sigma(n) - if (n % 4, 0, 32*sigma(n/4)); \\ Michel Marcus, Jul 13 2016
    
  • Python
    from sympy import divisors
    def a(n): return 1 if n==0 else 8*sum(d for d in divisors(n) if d%4 != 0)
    print([a(n) for n in range(57)]) # Michael S. Branicky, Jan 08 2021
    
  • Python
    from sympy import divisor_sigma
    def A000118(n): return 1 if n == 0 else 8*divisor_sigma(n) if n % 2 else 24*divisor_sigma(int(bin(n)[2:].rstrip('0'),2)) # Chai Wah Wu, Jun 27 2022
    
  • Sage
    A = ModularForms( Gamma0(4), 2, prec=57) . basis(); A[0] + 8*A[1]; # Michael Somos, Jun 12 2014
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*4)
    Q.representation_number_list(60) # Peter Luschny, Jun 20 2014
    

Formula

G.f.: theta_3(q)^4 = (Product_{n>=1} (1-q^(2n))*(1+q^(2n-1))^2)^4 = eta(-q)^8/eta(q^2)^4; eta = Dedekind's function.
a(n) = 8*sigma(n) - 32*sigma(n/4) for n > 0, where the latter term is 0 if n is not a multiple of 4.
Euler transform of period 4 sequence [8, -12, 8, -4, ...]. - Michael Somos, Dec 16 2002
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2). - Michael Somos, Nov 02 2006
G.f. is a period 1 Fourier series which satisfies f(-1/(4*t)) = 4*(t/i)^2*f(t) where q = exp(2*Pi*i*t). - Michael Somos, Jan 25 2008
For n > 0, a(n)/8 is multiplicative and a(p^n)/8 = 1 + p + p^2 + ... + p^n for p an odd prime, a(2^n)/8 = 1 + 2 for n > 0.
a(n) = 8*A000203(n/A006519(n))*(2 + (-1)^n). - Benoit Cloitre, May 16 2002
G.f.: 1 + 8*Sum_{k>0} x^k / (1 + (-x)^k)^2 = 1 + 8*Sum_{k>0} k * x^k / (1 + (-x)^k).
G.f. = s(2)^20/(s(1)*s(4))^8, where s(k) := subs(q=q^k, eta(q)), where eta(q) is Dedekind's function, cf. A010815. [Fine]
Fine gives another explicit formula for a(n) in terms of the divisors of n.
a(n) = 8*A046897(n), n > 0. - Ralf Stephan, Apr 02 2003
A096727(n) = (-1)^n * a(n). a(2*n) = A004011(n). a(2*n + 1) = A005879(n).
Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = 8*(1-4^(1-s))*zeta(s)*zeta(s-1). [Ramanu. J. 7 (2003) 95-127, eq (3.2)]. - R. J. Mathar, Jul 02 2012
Average value is (Pi^2/2)*n + O(sqrt(n)). - Charles R Greathouse IV, Feb 17 2015
From Wolfdieter Lang, Jan 14 2016: (Start)
For n >= 1: a(n) = 8*Sum_{d | n} b(d)*d, with b(d) = 1 if d/4 is not an integer else 0. See, e.g., the Freitag-Busam reference, p. 392.
For n >= 1: a(n) = 8*sigma(n) if n is odd else 24*sigma(m(n)), where m(n) is the largest odd divisor of n (see A000265), and sigma is given in A000203. See the Moreno-Wagstaff reference, Theorem 2. 6 (Jacobi), p. 29. (End)
a(n) = (8/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017