cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000132 Number of ways of writing n as a sum of 5 squares.

Original entry on oeis.org

1, 10, 40, 80, 90, 112, 240, 320, 200, 250, 560, 560, 400, 560, 800, 960, 730, 480, 1240, 1520, 752, 1120, 1840, 1600, 1200, 1210, 2000, 2240, 1600, 1680, 2720, 3200, 1480, 1440, 3680, 3040, 2250, 2800, 3280, 4160, 2800, 1920, 4320, 5040, 2800, 3472, 5920
Offset: 0

Views

Author

Keywords

Comments

The units digit of a(n) is 2 if n=5*t^2 for some natural number t, and 0 otherwise. See Moreno & Wagstaff, p. 258, exercise 2. - Ant King, Mar 17 2013
See A025429 for the number of partitions of n into five nonzero squares. - M. F. Hasler, May 30 2014
Also, theta series of lattice Z^5. - Sean A. Irvine, Jul 27 2020

Examples

			G.f. = 1 + 10*x + 40*x^2 + 80*x^3 + 90*x^4 + 112*x^5 + 240*x^6 + ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 128.
  • J. Carlos Moreno and Samuel S. Wagstaff Jr., Sums Of Squares Of Integers, Chapman & Hall/CRC, (2006). [Ant King, Mar 17 2013]

Crossrefs

5th column of A286815. - Seiichi Manyama, May 27 2017
Row d=5 of A122141.

Programs

  • Mathematica
    Table[SquaresR[5, n], {n, 0, 46}] (* Ray Chandler, Nov 28 2006 *)
    SquaresR[5,Range[0,50]] (* Harvey P. Dale, Aug 26 2011 *)
  • PARI
    a(n, k=5) = if(n==0, return(1)); if(k <= 0, return(0)); if(k==1, return(issquare(n))); my(count = 0); for(v = 0, sqrtint(n), count += (2 - (v == 0))*if(k > 2, a(n - v^2, k-1), issquare(n - v^2) * (2 - (n - v^2 == 0)))); count; \\ Daniel Suteu, Aug 28 2021
    
  • Python
    # uses Python code from A000118
    from math import isqrt
    def A000132(n): return A000118(n)+(sum(A000118(n-k**2) for k in range(1,isqrt(n)+1))<<1) # Chai Wah Wu, Jun 23 2024
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*5)
    Q.representation_number_list(47) # Peter Luschny, Jun 20 2014
    

Formula

G.f.: (Sum_{j=-oo..+oo} x^(j^2))^5. - R. J. Mathar, Jul 31 2007
a(n) = (10/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
a(n) = A000118(n) + 2*Sum_{k=1..floor(sqrt(n))} A000118(n - k^2). - Daniel Suteu, Aug 28 2021

Extensions

Extended by Ray Chandler, Nov 28 2006