A000145 Number of ways of writing n as a sum of 12 squares.
1, 24, 264, 1760, 7944, 25872, 64416, 133056, 253704, 472760, 825264, 1297056, 1938336, 2963664, 4437312, 6091584, 8118024, 11368368, 15653352, 19822176, 24832944, 32826112, 42517728, 51425088, 61903776, 78146664, 98021616
Offset: 0
Examples
G.f. = 1 + 24*x + 264*x^2 + 1760*x^3 + 7944*x^4 + 25872*x^5 + 64416*x^6 + 133056*x^7 + ...
References
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Shi-Chao Chen, Congruences for rs(n), Journal of Number Theory, Volume 130, Issue 9, September 2010, Pages 2028-2032.
- Index entries for sequences related to sums of squares
Programs
-
Magma
A := Basis( ModularForms( Gamma0(4), 6), 25); A[1] + 24*A[2] + 264*A[3] + 1760*A[4]; /* Michael Somos, Aug 15 2015 */
-
Maple
(sum(x^(m^2),m=-10..10))^12; # gives g.f. for first 100 terms t1:=(sum(x^(m^2), m=-n..n))^12; t2:=series(t1,x,n+1); t2[n+1]; # N. J. A. Sloane, Oct 01 2011 A000145list := proc(len) series(JacobiTheta3(0, x)^12, x, len+1); seq(coeff(%, x, j), j=0..len-1) end: A000145list(27); # Peter Luschny, Oct 02 2018
-
Mathematica
SquaresR[12,Range[0,30]] (* Harvey P. Dale, Sep 07 2012 *) a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^12, {q, 0, n}]; (* Michael Somos, Aug 15 2015 *) nmax = 30; CoefficientList[Series[Product[(1 - x^(2*k))^12 * (1 + x^(2*k - 1))^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 10 2018 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^12, n))}; /* Michael Somos, Sep 21 2005 */
Formula
Expansion of eta(q^2)^60 / (eta(q) * eta(q^4))^24 in powers of q.
Euler transform of period 4 sequence [24, -36, 24, -12, ...]. - Michael Somos, Sep 21 2005
G.f.: (Sum_k x^k^2)^12 = theta_3(q)^12.
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 64 (t/i)^6 f(t) where q = exp(2 Pi i t).
a(n) = (24/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
Comments