cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000145 Number of ways of writing n as a sum of 12 squares.

Original entry on oeis.org

1, 24, 264, 1760, 7944, 25872, 64416, 133056, 253704, 472760, 825264, 1297056, 1938336, 2963664, 4437312, 6091584, 8118024, 11368368, 15653352, 19822176, 24832944, 32826112, 42517728, 51425088, 61903776, 78146664, 98021616
Offset: 0

Views

Author

Keywords

Comments

Apparently 8 | a(n). - Alexander R. Povolotsky, Oct 01 2011

Examples

			G.f. = 1 + 24*x + 264*x^2 + 1760*x^3 + 7944*x^4 + 25872*x^5 + 64416*x^6 + 133056*x^7 + ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.

Crossrefs

Row d=12 of A122141 and of A319574, 12th column of A286815.

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(4), 6), 25); A[1] + 24*A[2] + 264*A[3] + 1760*A[4]; /* Michael Somos, Aug 15 2015 */
  • Maple
    (sum(x^(m^2),m=-10..10))^12; # gives g.f. for first 100 terms
    t1:=(sum(x^(m^2), m=-n..n))^12; t2:=series(t1,x,n+1); t2[n+1]; # N. J. A. Sloane, Oct 01 2011
    A000145list := proc(len) series(JacobiTheta3(0, x)^12, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000145list(27); # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[12,Range[0,30]] (* Harvey P. Dale, Sep 07 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^12, {q, 0, n}]; (* Michael Somos, Aug 15 2015 *)
    nmax = 30; CoefficientList[Series[Product[(1 - x^(2*k))^12 * (1 + x^(2*k - 1))^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 10 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^12, n))}; /* Michael Somos, Sep 21 2005 */
    

Formula

Expansion of eta(q^2)^60 / (eta(q) * eta(q^4))^24 in powers of q.
Euler transform of period 4 sequence [24, -36, 24, -12, ...]. - Michael Somos, Sep 21 2005
G.f.: (Sum_k x^k^2)^12 = theta_3(q)^12.
a(n) = A029751(n) + 16 * A000735(n). - Michael Somos, Sep 21 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 64 (t/i)^6 f(t) where q = exp(2 Pi i t).
a(n) = (24/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017