cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A188671 A000145(n) / 8 - (n^5 + 1).

Original entry on oeis.org

1, 0, -24, -32, 108, 275, -176, -1056, 45, 3157, 1080, -6541, -836, 16839, 2072, -33824, 1188, 67100, 1672, -95883, 19162, 161083, -8208, -224653, 2707, 371325, 67500, -520025, -1188, 870551, 8512, -1082400, 148334, 1419889, 10428, -1588228
Offset: 1

Views

Author

Michael Somos, Apr 11 2011

Keywords

Comments

Theorem 2 in the Hales reference defines t_p = (n_p - 8(p^5 + 1)) / (32 p^(5/2)) where n_p is the number of ways to express p as a sum of 12 squares.

Examples

			x - 24*x^3 - 32*x^4 + 108*x^5 + 275*x^6 - 176*x^7 - 1056*x^8 + 45*x^9 + ...
		

Crossrefs

Cf. A000145.

Programs

  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k = 1, sqrtint(n), 2 * x^k^2, 1 + x*O(x^n))^12, n) / 8 - (n^5 + 1))}

Formula

G.f.: ((Sum_{k} x^k^2)^12 - 1) / 8 - (2*x + 21*x^2 + 76*x^3 + 16*x^4 + 6*x^5 - x^6) / (1 - x)^6.
a(n) = A000145(n) / 8 - (n^5 + 1).

A122141 Array: T(d,n) = number of ways of writing n as a sum of d squares, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 1, 6, 4, 0, 1, 8, 12, 0, 2, 1, 10, 24, 8, 4, 0, 1, 12, 40, 32, 6, 8, 0, 1, 14, 60, 80, 24, 24, 0, 0, 1, 16, 84, 160, 90, 48, 24, 0, 0, 1, 18, 112, 280, 252, 112, 96, 0, 4, 2, 1, 20, 144, 448, 574, 312, 240, 64, 12, 4, 0, 1, 22, 180, 672, 1136, 840, 544, 320, 24, 30, 8, 0
Offset: 1

Views

Author

R. J. Mathar, Oct 29 2006

Keywords

Comments

This is the transpose of the array in A286815.
T(d,n) is divisible by 2d for any n != 0 iff d is a power of 2. - Jianing Song, Sep 05 2018

Examples

			Array T(d,n) with rows d = 1,2,3,... and columns n = 0,1,2,3,... reads
  1  2   0   0    2    0     0     0     0     2      0 ...
  1  4   4   0    4    8     0     0     4     4      8 ...
  1  6  12   8    6   24    24     0    12    30     24 ...
  1  8  24  32   24   48    96    64    24   104    144 ...
  1 10  40  80   90  112   240   320   200   250    560 ...
  1 12  60 160  252  312   544   960  1020   876   1560 ...
  1 14  84 280  574  840  1288  2368  3444  3542   4424 ...
  1 16 112 448 1136 2016  3136  5504  9328 12112  14112 ...
  1 18 144 672 2034 4320  7392 12672 22608 34802  44640 ...
  1 20 180 960 3380 8424 16320 28800 52020 88660 129064 ...
		

Crossrefs

Cf. A000122 (1st row), A004018 (2nd row), A005875 (3rd row), A000118 (4th row), A000132 (5th row), A000141 (6th row), A008451 (7th row), A000143 (8th row), A008452 (9th row), A000144 (10th row), A008453 (11th row), A000145 (12th row), A276285 (13th row), A276286 (14th row), A276287 (15th row), A000152 (16th row).
Cf. A005843 (2nd column), A046092 (3rd column), A130809 (4th column).
Cf. A010052 (1st row divides 2), A002654 (2nd row divides 4), A046897 (4th row divides 8), A008457 (8th row divides 16), A302855 (16th row divides 32), A302857 (32nd row divides 64).

Programs

  • Maple
    A122141 := proc(d,n) local i,cnts ; cnts := 0 ; for i from -trunc(sqrt(n)) to trunc(sqrt(n)) do if n-i^2 >= 0 then if d > 1 then cnts := cnts+procname(d-1,n-i^2) ; elif n-i^2 = 0 then cnts := cnts+1 ; fi ; fi ; od ; cnts ;
    end:
    for diag from 1 to 14 do for n from 0 to diag-1 do d := diag-n ; printf("%d,",A122141(d,n)) ; od ; od;
    # second Maple program:
    A:= proc(d, n) option remember; `if`(n=0, 1, `if`(n<0 or d<1, 0,
          A(d-1, n) +2*add(A(d-1, n-j^2), j=1..isqrt(n))))
        end:
    seq(seq(A(h-n, n), n=0..h-1), h=1..14); # Alois P. Heinz, Jul 16 2014
  • Mathematica
    Table[ SquaresR[d - n, n], {d, 1, 12}, {n, 0, d - 1}] // Flatten (* Jean-François Alcover, Jun 13 2013 *)
    A[d_, n_] := A[d, n] = If[n==0, 1, If[n<0 || d<1, 0, A[d-1, n] + 2*Sum[A[d-1, n-j^2], {j, 1, Sqrt[n]}]]]; Table[A[h-n, n], {h, 1, 14}, {n, 0, h-1}] // Flatten (* Jean-François Alcover, Feb 28 2018, after Alois P. Heinz *)
  • Python
    from sympy.core.power import isqrt
    from functools import cache
    @cache
    def T(d, n):
      if n == 0: return 1
      if n < 0 or d < 1: return 0
      return T(d-1, n) + sum(T(d-1, n-(j**2)) for j in range(1, isqrt(n)+1)) * 2  # Darío Clavijo, Feb 06 2024

Formula

T(n,n) = A066535(n). - Alois P. Heinz, Jul 16 2014

A286815 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Product_{j>=1} (1 - x^(2*j))^5/((1 - x^j)*(1 - x^(4*j)))^2)^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 0, 0, 1, 6, 4, 0, 0, 1, 8, 12, 0, 2, 0, 1, 10, 24, 8, 4, 0, 0, 1, 12, 40, 32, 6, 8, 0, 0, 1, 14, 60, 80, 24, 24, 0, 0, 0, 1, 16, 84, 160, 90, 48, 24, 0, 0, 0, 1, 18, 112, 280, 252, 112, 96, 0, 4, 2, 0, 1, 20, 144, 448, 574, 312, 240, 64, 12
Offset: 0

Views

Author

Seiichi Manyama, May 27 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k squares.
This is the transpose of the array in A122141.

Examples

			Square array begins:
   1, 1, 1,  1,  1, ...
   0, 2, 4,  6,  8, ...
   0, 0, 4, 12, 24, ...
   0, 0, 0,  8, 32, ...
   0, 2, 4,  6, 24, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          A(n, k-1) +2*add(A(n-j^2, k-1), j=1..isqrt(n))))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 27 2017
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, If[n < 0 || k < 1, 0, A[n, k-1] + 2*Sum[A[n-j^2, k-1], {j, 1, Sqrt[n]}]]];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 28 2018, after Alois P. Heinz *)

Formula

G.f. of column k: (Product_{j>=1} (1 - x^(2*j))^5/((1 - x^j)*(1 - x^(4*j)))^2)^k.

A000735 Expansion of Product_{k>=1} (1 - x^k)^12.

Original entry on oeis.org

1, -12, 54, -88, -99, 540, -418, -648, 594, 836, 1056, -4104, -209, 4104, -594, 4256, -6480, -4752, -298, 5016, 17226, -12100, -5346, -1296, -9063, -7128, 19494, 29160, -10032, -7668, -34738, 8712, -22572, 21812, 49248, -46872, 67562, 2508, -47520, -76912, -25191, 67716
Offset: 0

Views

Author

Keywords

Comments

Glaisher (1905, 1907) calls this sequence {Omega(m): m=1,3,5,7,9,11,...}. - N. J. A. Sloane, Nov 24 2018
Number 9 of the 74 eta-quotients listed in Table I of Martin (1996). See g.f. B(q) below: cusp form of weight 6 and level 4.
Grosswald uses b_n where b_{2n+1} = a(n).
Cynk and Hulek on page 14 in "The Example of Ahlgren" refer to a_p of the unique normalized weight 6 level 4 cusp form. - Michael Somos, Aug 24 2012
Expansion of q^(-1/2) * k(q) * k'(q)^4 * (K(q) / (Pi/2))^6 / 4 in powers of q where k(), k'(), K() are Jacobi elliptic functions. In Glaisher 1907 denoted by Omega(m) defined in section 62 on page 37. - Michael Somos, May 19 2013

Examples

			G.f. A(x) = 1 - 12*x + 54*x^2 - 88*x^3 - 99*x^4 + 540*x^5 - 418*x^6 - 648*x^7 + ...
G.f. B(q) = q - 12*q^3 + 54*q^5 - 88*q^7 - 99*q^9 + 540*q^11 - 418*q^13 - 648*q^15 + ...
		

References

  • J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See p. 340.
  • Glaisher, J. W. L. (1906). The arithmetical functions P(m), Q(m), Omega(m). Quart. J. Math, 37, 36-48.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • Newman, Morris; A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A209676 is the same except for signs.
This is a bisection of A227239.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A000735List(len) = DedekindEta(len, 12)
    A000735List(42) |> println # Peter Luschny, Mar 10 2018
  • Magma
    Basis( CuspForms( Gamma0(4), 6), 85) [1]; /* Michael Somos, Dec 09 2013 */
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -12): seq(a(n), n=0..45); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[ Take[ Expand[ Product[(1 - x^k)^12, {k, 42}]], 42], x]
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^12, {q, 0, n}]; (* Michael Somos, May 19 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - q^k, {k, n}]^12, {q, 0, n}]; (* Michael Somos, May 19 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^12, n))}; /* Michael Somos, Sep 21 2005 */
    
  • Sage
    CuspForms( Gamma0(4), 6, prec=85).0; # Michael Somos, May 28 2013
    

Formula

Expansion of q^(-1/2) * eta(q)^12 in powers of q.
Euler transform of period 1 sequence [-12, ...]. - Michael Somos, Sep 21 2005
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^4*w^2 + 48*(u*v*w)^2 + 4906*u^2*w^4 - u^6. - Michael Somos, Sep 21 2005
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^5 * b(p^(e-2)). - Michael Somos, Mar 08 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 64 (t/i)^6 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 24 2012
G.f.: (Product_{k>0} (1 - x^k))^12.
A000145(n) = A029751(n) + 16*a(n). - Michael Somos, Sep 21 2005
a(n) = (-1)^n * A209676(n).
Convolution inverse of A005758. Convolution square of A000729.
a(0) = 1, a(n) = -(12/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-12*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018

A286346 Expansion of eta(q)^24 / eta(q^2)^12 in powers of q.

Original entry on oeis.org

1, -24, 264, -1760, 7944, -25872, 64416, -133056, 253704, -472760, 825264, -1297056, 1938336, -2963664, 4437312, -6091584, 8118024, -11368368, 15653352, -19822176, 24832944, -32826112, 42517728, -51425088, 61903776, -78146664, 98021616, -115331264, 133522752
Offset: 0

Views

Author

Seiichi Manyama, May 08 2017

Keywords

Crossrefs

Cf. A000145, A013973 (E_6).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1 - x^k)/(1 + x^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 10 2018 *)
    a[n_] := (-1)^n SquaresR[12, n];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 21 2021 *)
  • PARI
    q = 'q + O('q^50); Vec(eta(q)^24 / eta(q^2)^12) \\ Michel Marcus, Jul 07 2018

Formula

a(n) = (-1)^n * A000145(n).
Euler Transform of [-24, -12, -24, -12, -24, -12, -24, -12, ...]. - Simon Plouffe, Jun 23 2018

A276285 Number of ways of writing n as a sum of 13 squares.

Original entry on oeis.org

1, 26, 312, 2288, 11466, 41808, 116688, 265408, 535704, 1031914, 1899664, 3214224, 5043376, 7801744, 12066912, 17689152, 24443978, 34039200, 48210760, 64966096, 83323344, 109157152, 145532816, 185245632, 227110416, 284788010, 363737712
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2016

Keywords

Comments

More generally, the ordinary generating function for the number of ways of writing n as a sum of k squares is theta_3(0, q)^k = 1 + 2*k*q + 2*(k - 1)*k*q^2 + (4/3)*(k - 2)*(k - 1)*k*q^3 + (2/3)*((k - 3)*(k - 2)*(k - 1) + 3)*k*q^4 + (4/15) *(k - 1)*k*(k^3 - 9*k^2 + 26*k - 9)*q^5 + ..., where theta is the Jacobi theta functions.

Crossrefs

13th column of A286815. - Seiichi Manyama, May 27 2017
Row d=13 of A122141.
Cf. Number of ways of writing n as a sum of k squares: A004018 (k = 2), A005875 (k = 3), A000118 (k = 4), A000132 (k = 5), A000141 (k = 6), A008451 (k = 7), A000143 (k = 8), A008452 (k = 9), A000144 (k = 10), A008453 (k = 11), A000145 (k = 12), this sequence (k = 13), A000152 (k = 16).

Programs

  • Mathematica
    Table[SquaresR[13, n], {n, 0, 26}]

Formula

G.f.: theta_3(0,q)^13, where theta_3(x,q) is the third Jacobi theta function.
a(n) = (26/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

A029751 Average theta series of odd unimodular lattices in dimension 12.

Original entry on oeis.org

1, 8, 248, 1952, 7928, 25008, 60512, 134464, 253688, 474344, 775248, 1288416, 1934432, 2970352, 4168384, 6101952, 8118008, 11358864, 14704664, 19808800, 24782928, 32809216, 39940896, 51490752, 61899872, 78150008, 92080912
Offset: 0

Views

Author

Keywords

References

  • R. A. Rankin, Modular Forms, p. 240 ff.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := (-1)^(n-1)*8*DivisorSum[n, (-1)^(n + n/#)*#^5&]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 06 2017, translated from PARI *)
  • PARI
    a(n)=if(n<1, n==0, (-1)^(n-1)*8*sumdiv(n,d,(-1)^(n+n/d)*d^5)) /* Michael Somos, Sep 21 2005 */

Formula

G.f.: 1 + 8*Sum_{k>0} k^5 x^k/(1+(-x)^k). - Michael Somos, Sep 21 2005
A000145(n) = a(n) + 16*A000735(n). - Michael Somos, Sep 21 2005

A004413 Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-12).

Original entry on oeis.org

1, -24, 312, -2912, 21816, -139152, 783328, -3986112, 18650424, -81251896, 332798544, -1291339296, 4776117216, -16922753616, 57683178432, -189821722688, 604884735288, -1871370360240, 5633654421720
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
  • PARI
    q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^12) \\ Altug Alkan, Sep 20 2018

Formula

a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 12 for this sequence. - Vaclav Kotesovec, Aug 18 2015
From Ilya Gutkovskiy, Sep 20 2018: (Start)
G.f.: 1/theta_3(x)^12, where theta_3() is the Jacobi theta function.
G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^12. (End)
Showing 1-8 of 8 results.