cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A000727 Expansion of Product_{k >= 1} (1 - x^k)^4.

Original entry on oeis.org

1, -4, 2, 8, -5, -4, -10, 8, 9, 0, 14, -16, -10, -4, 0, -8, 14, 20, 2, 0, -11, 20, -32, -16, 0, -4, 14, 8, -9, 20, 26, 0, 2, -28, 0, -16, 16, -28, -22, 0, 14, 16, 0, 40, 0, -28, 26, 32, -17, 0, -32, -16, -22, 0, -10, 32, -34, -8, 14, 0, 45, -4, 38, 8, 0, 0, -34, -8, 38, 0, -22, -56, 2, -28, 0, 0, -10, 20, 64, -40, -20, 44
Offset: 0

Views

Author

Keywords

Comments

Number 51 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan (see the link, pp. 155 and 157 Nr. 23.) conjectured the expansion coefficients called Psi_4(n) of eta^4(6*z) in powers of q = exp(2*Pi*i*z), Im(z) > 0, where i is the imaginary unit. In the Finch link on p. 5, multiplicity is used and Psi_4(p^r), called f(p^r), is given (see also b(p^e) formula given by Michael Somos, Aug 23 2006). Mordell proved this conjecture on pp. 121-122 based on Klein-Fricke, Theorie der elliptischen Modulfunktionen, 1892, Band II, p. 374. The product formula for the Dirichlet series, Mordell, eq. (7) for a=2,is used to find Psi_4(n), called f_2(n), from f_2(p) for primes p. The primes p = 2 and 3 do not appear in the product. - Wolfdieter Lang, May 03 2016

Examples

			G.f. = 1 - 4*x + 2*x^2 + 8*x^3 - 5*x^4 - 4*x^5 - 10*x^6 + 8*x^7 + 9*x^8 + ...
G.f. = q - 4*q^7 + 2*q^13 + 8*q^19 - 5*q^25 - 4*q^31 - 10*q^37 + 8*q^43 + ...
		

References

  • Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, p. 415. Exer. 47.2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    # DedekindEta is defined in A000594.
    L000727List(len) = DedekindEta(len, 4)
    L000727List(82) |> println # Peter Luschny, Mar 09 2018
    
  • Magma
    qEigenform( EllipticCurve( [0, 0, 0, 0, 1]), 493); /* Michael Somos, Jun 12 2014 */
    
  • Magma
    A := Basis( ModularForms( Gamma0(36), 2), 493); A[2] - 4*A[8]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    Basis( CuspForms( Gamma0(36), 2), 493)[1]; /* Michael Somos, May 17 2015 */
    
  • Magma
    Coefficients(&*[(1-x^m)^4:m in [1..100]])[1..100] where x is PolynomialRing(Integers()).1; // Vincenzo Librandi, Mar 10 2018
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -4): seq(a(n), n=0..81); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a = etr[-4&]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4, {x, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    nmax = 80; CoefficientList[Series[Sum[Sum[(-1)^(k+m) * (2*k+1) * q^(k*(k+1)/2 + m*(3*m-1)/2), {k, 0, nmax}], {m, -nmax, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Dec 06 2015 *)
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 6*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, if(e%2, 0, (-1)^(e/2) * p^(e/2)), for( y=1, sqrtint(p\3), if( issquare( p - 3*y^2, &x), break)); a0=1; if( x%3!=1, x=-x); a1 = x = 2*x; for( i=2, e, y = x*a1 - p*a0; a0=a1; a1=y); a1)))}; /* Michael Somos, Aug 23 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff(eta(x + x * O(x^n))^4, n))};
    
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, 0, 1], 1), 6*n + 1))}; /* Michael Somos, Jul 01 2004 */
    
  • Sage
    ModularForms( Gamma0(36), 2, prec=493).0; # Michael Somos, Jun 12 2014
    

Formula

Euler transform of period 1 sequence [-4, -4, ...]. - Michael Somos, Apr 02 2005
Given g.f. A(x), then B(q) = q * A(q^3)^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = w*u^2 - v^3 + 16 * u*w^2. - Michael Somos, Apr 02 2005
a(n) = b(6*n + 1) where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)), b(p) = 0 if p == 5 (mod 6), b(p) = 2*x where p = x^2 + 3*y^2 == 1 (mod 6) and x == 1 (mod 3). - Michael Somos, Aug 23 2006
Coefficients of L-series for elliptic curve "36a1": y^2 = x^3 + 1. - Michael Somos, Jul 01 2004
a(n) = (-1)^n * A187076(n). a(2*n + 1) = -4 * A187150(n). a(25*n + 9) = a(25*n + 14) = a(25*n + 19) = a(25*n + 24) = 0. a(25*n + 4) = -5 * a(n). Convolution inverse of A023003. Convolution square of A002107. Convolution square is A000731.
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-4*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 5 (mod 6). Then a( M^2*n + (M^2 - 1)/6 ) = (-1)^k*M*a(n). See Cooper et al., equation 4. - Peter Bala, Dec 01 2020
a(n) = b(6*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(e+1) - ((x-sqrt(-3)*y)/2)^(e+1))/x if p == 1 (mod 3) where p = x^2 + 3*y^2 and x == 1 (mod 3). - Jianing Song, Mar 19 2022

A002107 Expansion of Product_{k>=1} (1 - x^k)^2.

Original entry on oeis.org

1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, 0, 0, 2, 3, -2, 2, 0, 0, -2, -2, 0, 0, -2, -1, 0, 2, 2, -2, 2, 1, 2, 0, 2, -2, -2, 2, 0, -2, 0, -4, 0, 0, 0, 1, -2, 0, 0, 2, 0, 2, 2, 1, -2, 0, 2, 2, 0, 0, -2, 0, -2, 0, -2, 2, 0, -4, 0, 0, -2, -1, 2, 0, 2, 0, 0, 0, -2
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts, with 2 types of each part. E.g., for n=4, we consider k and k* to be different versions of k and so we have 4, 4*, 31, 31*, 3*1, 3*1*, 22*, 211*, 2*11*. The even partitions number 5 and the odd partitions number 4, so a(4)=5-4=1. - Jon Perry, Apr 04 2004
Also, number of partitions of n into parts of -2 different kinds (based upon formal analogy). - Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 29 2004
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 68 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 2*x - x^2 + 2*x^3 + x^4 + 2*x^5 - 2*x^6 - 2*x^8 - 2*x^9 + x^10 + ...
G.f. = q - 2*q^13 - q^25 + 2*q^37 + q^49 + 2*q^61 - 2*q^73 - 2*q^97 - 2*q^109 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000712 (reciprocal of g.f.), A010815, A010816, A258406.
Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A010815 - A010840.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A002107List(len) = DedekindEta(len, 2)
    A002107List(78) |> println # Peter Luschny, Mar 09 2018
  • Magma
    Basis( CuspForms( Gamma1(144), 1), 926) [1]; /* Michael Somos, May 17 2015 */
    
  • Maple
    A010816 := proc (n); if frac(sqrt(8*n+1)) = 0 then (-1)^((1/2)*isqrt(8*n+1)-1/2)*isqrt(8*n+1) else 0 end if; end proc:
    N := 10:
    a := proc (n) option remember; if n < 0 then 0 else A010816(n) + add( (-1)^(k+1)*a(n - (1/2)*k*(3*k-1) ), k = -N..-1) + add( (-1)^(k+1)*a(n - (1/2)*k*(3*k-1) ), k = 1..N) end if; end proc:
    seq(a(n), n = 0..100); # Peter Bala, Apr 06 2022
  • Mathematica
    terms = 78; Clear[s]; s[n_] := s[n] = Product[(1 - x^k)^2, {k, 1, n}] // Expand // CoefficientList[#, x]& // Take[#, terms]&; s[n = 10]; s[n = 2*n]; While[s[n] != s[n - 1], n = 2*n]; A002107 = s[n] (* Jean-François Alcover, Jan 17 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^2, {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
  • PARI
    {a(n) = my(A, p, e, x); if( n<0, 0, n = 12*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%12>1, if( e%2, 0, (-1)^((p%12==5) * e/2)), for( i=1, sqrtint(p\9), if( issquare(p - 9*i^2), x=i; break)); (e + 1) * (-1)^(e*x))))}; /* Michael Somos, Aug 30 2006 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^2, n))}; /* Michael Somos, Aug 30 2006 */
    
  • PARI
    Vec(eta(x)^2) \\ Charles R Greathouse IV, Apr 22 2016
    

Formula

Expansion of q^(-1/12) * eta(q)^2 in powers of q. - Michael Somos, Mar 06 2012
Euler transform of period 1 sequence [ -2, ...]. - Michael Somos, Mar 06 2012
a(n) = b(12*n + 1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 7, 11 (mod 12), b(p^e) = (-1)^(e/2) * (1 + (-1)^e) / 2 if p == 5 (mod 12), b(p^e) = (e + 1) * (-1)^(e*x) if p == 1 (mod 12) where p = x^2 + 9*y^2. - Michael Somos, Sep 16 2006
Convolution inverse of A000712.
a(0) = 1, a(n) = -(2/n)*Sum{k = 0..n-1} a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011
Expansion of f(-x)^2 in powers of x where f() is a Ramanujan theta function. - Michael Somos, May 17 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12 (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, May 17 2015
a(n) = Sum_{k=0..n} A010815(k)*A010815(n-k); self convolution of A010815. - Gevorg Hmayakyan, Sep 18 2016
G.f.: Sum_{m, n in Z, n >= 2*|m|} (-1)^n * x^((3*(2*n + 1)^2 - (6*m + 1)^2)/24). - Seiichi Manyama, Oct 01 2016
G.f.: exp(-2*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
From Peter Bala, Jan 02 2021: (Start)
For prime p congruent to 5, 7 or 11 (mod 12), a(n*p^2 + (p^2 - 1)/12) = e*a(n), where e = 1 if p == 7 or 11 (mod 12) and e = -1 if p == 5 (mod 12).
If n and p are coprime then a(n*p + (p^2 - 1)/12) = 0. See Cooper et al., Theorem 1. (End)
With the convention that a(n) = 0 for n < 0 we have the recurrence a(n) = A010816(n) + Sum_{k a nonzero integer} (-1)^(k+1)*a(n - k*(3*k-1)/2), where A010816(n) = (-1)^m*(2*m+1) if n = m*(m + 1)/2, with m positive, is a triangular number else equals 0. For example, n = 10 = (4*5)/2 is a triangular number, A010816(10) = 9, and so a(10) = 9 + a(9) + a(8) - a(5) - a(3) = 9 - 2 - 2 - 2 - 2 = 1. - Peter Bala, Apr 06 2022

A000731 Expansion of Product (1 - x^k)^8 in powers of x.

Original entry on oeis.org

1, -8, 20, 0, -70, 64, 56, 0, -125, -160, 308, 0, 110, 0, -520, 0, 57, 560, 0, 0, 182, -512, -880, 0, 1190, -448, 884, 0, 0, 0, -1400, 0, -1330, 1000, 1820, 0, -646, 1280, 0, 0, -1331, -2464, 380, 0, 1120, 0, 2576, 0, 0, -880, 1748, 0, -3850, 0, -3400, 0, 2703, 4160, -2500, 0, 3458
Offset: 0

Views

Author

Keywords

Comments

Number 22 of the 74 eta-quotients listed in Table I of Martin (1996).
Denoted by g_4(q) in Cynk and Hulek in Remark 3.4 on page 12 as the unique level 9 form of weight 4.
This is a member of an infinite family of integer weight modular forms. g_1 = A033687, g_2 = A030206, g_3 = A130539, g_4 = A000731. - Michael Somos, Aug 24 2012
a(n)=0 if and only if A033687(n)=0 (see the Han-Ono paper). - Emeric Deutsch, May 16 2008
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 8*x + 20*x^2 - 70*x^3 + 64*x^4 + 56*x^5 - 125*x^6 - 160*x^7 + ...
G.f. = q - 8*q^4 + 20*q^7 - 70*q^13 + 64*q^16 + 56*q^19 - 125*q^25 - ...
		

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.

Programs

  • Magma
    Basis( CuspForms( Gamma0(9), 4), 56) [1]; /* Michael Somos, Dec 09 2013 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^8, {x, 0, n}]; (* Michael Somos, Sep 29 2011 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^8, {x, 0, n}]; (* Michael Somos, Dec 09 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^8, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, p%3==2, if( e%2, 0, (-1)^(e/2) * p^(3*e/2)), forstep( y=sqrtint(4*p\3), sqrtint(p\3), -1, if( issquare( 4*p - 3*y^2, &x), if( x%3!=2, x=-x); break)); a0=1; a1 = y = x * (x^2 - 3*p); for( i=2, e, x = y*a1 - p^3*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 23 2006 */
    
  • Sage
    CuspForms( Gamma0(9), 4, prec=56).0; # Michael Somos, May 28 2013
    

Formula

Expansion of q^(-1/3) * eta(q)^8 in powers of q.
Expansion of q^(-1/3) * b(q)^3 * c(q) / 3 in powers of q where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 08 2006
Expansion of q^(-1) * b(q) * c(q)^3 / 27 in powers of q^3 where b(), c() are cubic AGM theta functions. - Michael Somos, Nov 08 2006
Euler transform of period 1 sequence [ -8, ...].
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-1)^(e/2) * p^(3*e/2) if p == 2 (mod 3), b(p^e) = b(p)*b(p^(e-1)) - b(p^(e-2))*p^3 if p == 1 (mod 3) where b(p) = (x^2 - 3*p)*x, 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Michael Somos, Aug 23 2006
Given g.f. A(x), then B(x) = x * A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 - u * w * (u + 16 * w). - Michael Somos, Feb 19 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^4 f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 29 2011
G.f.: Product_{k>0} (1 - x^k)^8.
a(2*n) = A153728(n). - Michael Somos, Sep 29 2011
a(4*n + 1) = -8 * a(n). - Michael Somos, Dec 06 2004
a(4*n + 3) = a(16*n + 13) = 0. - Michael Somos, Oct 19 2005
A092342(n) = a(n) + 81*A033690(n-1). - Michael Somos, Aug 22 2007
Sum_{n>=0} a(n) * q^(3*n + 1) = (Sum_{i,j,k in Z} (i-j) * (j-k) * (k-i) * q^((i*i + j*j + k*k) / 2)) / 2 where 0 = i+j+k, i == 1 (mod 3), j == 2 (mod 3), and k == 0 (mod 3). - Michael Somos, Sep 22 2014
a(0) = 1, a(n) = -(8/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-8*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are all congruent to 2 (mod 3). Then a( M^2*n + (M^2 - 1)/3 ) = (-1)^k*M^3*a(n). See Cooper et al., Theorem 1. - Peter Bala, Dec 01 2020
a(n) = b(3*n + 1) where b(n) is multiplicative and b(3^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * (-p^3)^(e/2) if p == 2 (mod 3), b(p^e) = (((x+sqrt(-3)*y)/2)^(3*e+3) - ((x-sqrt(-3)*y)/2)^(3*e+3))/(((x+sqrt(-3)*y)/2)^3 - ((x-sqrt(-3)*y)/2)^3) if p == 1 (mod 3) where 4*p = x^2 + 3*y^2, |x|<|y| and x == 2 (mod 3). - Jianing Song, Mar 19 2022

Extensions

Corrected by Charles R Greathouse IV, Sep 02 2009

A286354 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, 0, 0, 1, -4, 0, 2, 0, 0, 1, -5, 2, 5, 1, 1, 0, 1, -6, 5, 8, 0, 2, 0, 0, 1, -7, 9, 10, -5, 0, -2, 1, 0, 1, -8, 14, 10, -15, -4, -7, 0, 0, 0, 1, -9, 20, 7, -30, -6, -10, 0, -2, 0, 0, 1, -10, 27, 0, -49, 0, -5, 8, 0, -2, 0, 0, 1, -11, 35, -12, -70, 21, 11, 25, 9, 0, 1, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2017

Keywords

Comments

A(n,k) number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts with k types of each part.

Examples

			A(3,2) = 2 because we have [2, 1], [2', 1], [2, 1'], [2', 1'] (number of partitions of 3 into an even number of distinct parts with 2 types of each part), [3], [3'] (number of partitions of 3 into an odd number of distinct parts with 2 types of each part) and 4 - 2 = 2.
Square array begins:
1,  1,  1,  1,  1,   1,  ...
0, -1, -2, -3, -4,  -5,  ...
0, -1, -1,  0,  2,   5,  ...
0,  0,  2,  5,  8,  10,  ...
0,  0,  1,  0, -5, -15,  ...
0,  1,  2,  0, -4,  -6,  ...
		

Crossrefs

Main diagonal gives A008705.
Antidiagonal sums give A299105.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, -k*
          add(numtheory[sigma](j)*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x, x, Infinity]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[(-1)^i*x^(i*(3*i + 1)/2), {i, -Infinity, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^j)^k.
G.f. of column k: (Sum_{j=-inf..inf} (-1)^j*x^(j*(3*j+1)/2))^k.
Column k is the Euler transform of period 1 sequence [-k, -k, -k, ...].

A000729 Expansion of Product_{k >= 1} (1 - x^k)^6.

Original entry on oeis.org

1, -6, 9, 10, -30, 0, 11, 42, 0, -70, 18, -54, 49, 90, 0, -22, -60, 0, -110, 0, 81, 180, -78, 0, 130, -198, 0, -182, -30, 90, 121, 84, 0, 0, 210, 0, -252, -102, -270, 170, 0, 0, -69, 330, 0, -38, 420, 0, -190, -390, 0, -108, 0, 0, 0, -300, 99, 442, 210, 0, 418, -294, 0, 0, -510, 378, -540, 138, 0
Offset: 0

Views

Author

Keywords

Comments

This is Glaisher's function lambda(m). It appears to be defined only for odd m, and lambda(4t-1) = 0 (t >= 1), lambda(4t+1) = a(t) (t >= 0). - N. J. A. Sloane, Nov 25 2018
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 36 of the 74 eta-quotients listed in Table I of Martin (1996).
Dickson, v.2, p. 295 briefly states a result of Glaisher, 1883, pp 212-215. This result is that a(n) is the sum over all solutions of 16*n + 4 = x^2 + y^2 + z^2 + w^2 in nonnegative odd integers of chi(x) and is also the sum over all solutions of 8*n + 2 = x^2 + y^2 in nonnegative odd integers of chi(x) * chi(y) where chi(x) = x if x == 1 (mod 4) and -x if x == 3 (mod 4). [Michael Somos, Jun 18 2012]
Denoted by g_3(q) in Cynk and Hulek on page 8 as the unique weight 3 Hecke eigenform of level 16 with complex multiplication by i. - Michael Somos, Aug 24 2012
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472. - Michael Somos, Aug 24 2012

Examples

			G.f. = 1 - 6*x + 9*x^2 + 10*x^3 - 30*x^4 + 11*x^6 + 42*x^7 - 70*x^9 + 18*x^10 + ...
G.f. = q - 6*q^5 + 9*q^9 + 10*q^13 - 30*q^17 + 11*q^25 + 42*q^29 - 70*q^37 + ...
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 295, and vol. 3, p. 134.
  • J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See page 340.
  • J. W. L. Glaisher, The arithmetical functions P(m), Q(m), Omega(m), Quart. J. Math, 37 (1906), 36-48.
  • Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 3), 274); A[2] - 6*A[6] + 9*A[10] + 10*A[14] - 30*A[18]; /* Michael Somos, May 17 2015 */
    
  • Magma
    A := Basis( CuspForms( Gamma1(16), 3), 274); A[1] - 6*A[5]; /* Michael Somos, Jan 09 2017 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/16 EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q]^4 EllipticTheta[ 3, 0, q], {q, 0, 4 n + 1}]; (* Michael Somos, Jun 18 2012 *)
    a[ n_] := If[ n < 0, 0, With[ {m = Sqrt[ 16 n + 4]}, SeriesCoefficient[ Sum[ Mod[k, 2] q^k^2, {k, m}]^3 Sum[ KroneckerSymbol[ -4, k] k q^k^2, {k, m}], {q, 0, 16 n + 4}]]]; (* Michael Somos, Jun 12 2012 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[(1 - m) m ] (EllipticK[m] 2/Pi)^3 / (4 q^(1/2)), {q, 0, 2 n}]]; (* Michael Somos, Jun 22 2012 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^6, {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^6, {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ (-1/4) EllipticThetaPrime[ 1, -Pi/4, q] EllipticTheta[ 1, -Pi/4, q]^3, {q, 0, 4 n + 1}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ (-1/16) EllipticThetaPrime[ 1, 0, q] EllipticTheta[ 1, -Pi/2, q]^3, {q, 0, 4 n + 1}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p%4==3, if( e%2, 0, p^e), forstep( i=1, sqrtint(p), 2, if( issquare( p - i^2, &y), x=i; break)); a0=1; a1 = y = 2*(x^2 - y^2); for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 21 2006 */
    
  • PARI
    {a(n)=local(tn=(sqrtint(8*n+1)+1)\2);polcoeff(sum(m=0,tn,(1+2*m)^2*x^(m^2+m)+x*O(x^n)) + 2*sum(m=0,tn,sum(k=1,tn,(1+4*(m^2+m-k^2))*x^(m^2+m+k^2)+x*O(x^n))),n)} /* Paul D. Hanna, Mar 15 2010 */
    

Formula

Expansion of q^(-1/4)/16 * theta_2(q)^4 * theta_3(q) * theta_4(q) in powers of q. - [Dickson, v. 3, p. 134] from Stieltjes footnote 160. Michael Somos, Jun 18 2012
Expansion of q^(-1/2) / 4 * k * k' * (K / (pi/2))^3 in powers of q^2 where k, k', K are Jacobi elliptic functions. - Michael Somos, Jun 22 2012
G.f.: Product_{k>0}(1 - x^k)^6.
Given g.f. A(x), then A(q^4) = f(-q^4)^6 = phi(q) * phi(-q) * psi(q^2)^4 where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Aug 23 2006
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^e * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - b(p^(e-2)) * p^2 if p == 1 (mod 4) and b(p) = 2 * (x^2 - y^2) where p = x^2 + y^2 and y is even. - Michael Somos, Aug 23 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 64 (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 24 2012
G.f.: Sum_{k>=0} a(k) * x^(4*k + 1) = (1/2) * Sum_{u,v in Z} (u*u - 4*v*v) * x^(u*u + 4*v*v). - Michael Somos, Jun 14 2007
G.f.: eta(x)^6 = Sum_{n>=0} (1+2n)^2*x^(n^2+n) + 2*Sum_{n>=0,k>=1} (1 + 4(n^2+n-k^2))*x^(n^2+n+k^2) - from the Milne and Leininger reference. [Paul D. Hanna, Mar 15 2010]
a(0) = 1, a(n) = -(6/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-6*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M be a positive integer whose prime factors are all congruent to 3 (mod 4) - see A004614. Then a( M^2*n + (M^2 - 1)/4 ) = M^2*a(n). See Cooper et al., equation 5. - Peter Bala, Dec 01 2020
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^e * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = ((x+y*i)^(2*e+2) - (x-y*i)^(2*e+2))/((x+y*i)^2 - (x-y*i)^2) if p == 1 (mod 4) where p = x^2 + y^2 and x is odd. - Jianing Song, Mar 19 2022

A014787 Expansion of Jacobi theta constant (theta_2/2)^12.

Original entry on oeis.org

1, 12, 66, 232, 627, 1452, 2982, 5544, 9669, 16016, 25158, 38160, 56266, 80124, 111816, 153528, 205260, 270876, 353870, 452496, 574299, 724044, 895884, 1103520, 1353330, 1633500, 1966482, 2360072, 2792703, 3299340, 3892922, 4533936, 5273841, 6134448
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of 12 triangular numbers from A000217.

Examples

			a(2) = (A001160(7) - A000735(3))/256 = (16808 - (-88))/256 = 66. - _Wolfdieter Lang_, Jan 13 2017
		

Crossrefs

Column k=12 of A286180.
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Formula

From Wolfdieter Lang, Jan 13 2017: (Start)
G.f.: 12th power of g.f. for A010054.
a(n) = (A001160(2*n+3) - A000735(n+1))/256. See the Ono et al. link, case k=12, Theorem 7. (End)
a(0) = 1, a(n) = (12/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 12*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

Extensions

More terms from Seiichi Manyama, May 05 2017

A000145 Number of ways of writing n as a sum of 12 squares.

Original entry on oeis.org

1, 24, 264, 1760, 7944, 25872, 64416, 133056, 253704, 472760, 825264, 1297056, 1938336, 2963664, 4437312, 6091584, 8118024, 11368368, 15653352, 19822176, 24832944, 32826112, 42517728, 51425088, 61903776, 78146664, 98021616
Offset: 0

Views

Author

Keywords

Comments

Apparently 8 | a(n). - Alexander R. Povolotsky, Oct 01 2011

Examples

			G.f. = 1 + 24*x + 264*x^2 + 1760*x^3 + 7944*x^4 + 25872*x^5 + 64416*x^6 + 133056*x^7 + ...
		

References

  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.

Crossrefs

Row d=12 of A122141 and of A319574, 12th column of A286815.

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(4), 6), 25); A[1] + 24*A[2] + 264*A[3] + 1760*A[4]; /* Michael Somos, Aug 15 2015 */
  • Maple
    (sum(x^(m^2),m=-10..10))^12; # gives g.f. for first 100 terms
    t1:=(sum(x^(m^2), m=-n..n))^12; t2:=series(t1,x,n+1); t2[n+1]; # N. J. A. Sloane, Oct 01 2011
    A000145list := proc(len) series(JacobiTheta3(0, x)^12, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end: A000145list(27); # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[12,Range[0,30]] (* Harvey P. Dale, Sep 07 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^12, {q, 0, n}]; (* Michael Somos, Aug 15 2015 *)
    nmax = 30; CoefficientList[Series[Product[(1 - x^(2*k))^12 * (1 + x^(2*k - 1))^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 10 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n))^12, n))}; /* Michael Somos, Sep 21 2005 */
    

Formula

Expansion of eta(q^2)^60 / (eta(q) * eta(q^4))^24 in powers of q.
Euler transform of period 4 sequence [24, -36, 24, -12, ...]. - Michael Somos, Sep 21 2005
G.f.: (Sum_k x^k^2)^12 = theta_3(q)^12.
a(n) = A029751(n) + 16 * A000735(n). - Michael Somos, Sep 21 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 64 (t/i)^6 f(t) where q = exp(2 Pi i t).
a(n) = (24/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

A005758 Number of partitions of n into parts of 12 kinds.

Original entry on oeis.org

1, 12, 90, 520, 2535, 10908, 42614, 153960, 521235, 1669720, 5098938, 14931072, 42124380, 114945780, 304351020, 784087848, 1970043621, 4837060800, 11626305640, 27398234760, 63388751544, 144156086776, 322590526350
Offset: 0

Views

Author

Keywords

Comments

Euler transform of A010851. - Alois P. Heinz, Oct 17 2008
Convolution square of A005758 = A006922: (1, 24, 324, 3200, 25650, ...). - Gary W. Adamson, Jun 13 2009

Examples

			G.f. = 1 + 12*x + 90*x^2 + 520*x^3 + 2535*x^4 + 10908*x^5 + 42614*x^6 + ...
G.f. = 1/q + 12*q + 90*q^3 + 520*q^5 + 2535*q^7 + 10908*q^9 + 42614*q^11 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

12th column of A144064.

Programs

  • Maple
    with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*12, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
  • Mathematica
    CoefficientList[Series[1/QPochhammer[x,x]^12,{x,0,30}],x]  (* Harvey P. Dale, Apr 21 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / eta(x + x * O(x^n))^12, n))}; /* Michael Somos, Mar 07 2012 */

Formula

G.f.: Product ( 1 - x^k )^(-12).
Expansion of q^(1/2) * eta(q)^-12 in powers of q. - Michael Somos, Mar 07 2012
Convolution inverse of A000735.
a(n) ~ exp(2 * Pi * sqrt(2*n)) / (2^(15/4) * n^(15/4)). - Vaclav Kotesovec, Feb 28 2015
a(0) = 1, a(n) = (12/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(12*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A010818 Expansion of Product (1 - x^k)^10 in powers of x.

Original entry on oeis.org

1, -10, 35, -30, -105, 238, 0, -260, -165, 140, 1054, -770, -595, 0, -715, 2162, 455, 0, -2380, -1820, 2401, -680, 1495, 3080, 1615, -6958, -1925, 0, 0, 5100, -1442, 8330, -5355, 1330, 0, -16790, 0, 8190, 8265, 0, 1918, 0, 8415, -10230, -7140, -9362
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 - 10*x + 35*x^2 - 30*x^3 - 105*x^4 + 238*x^5 - 260*x^7 - 165*x^8 + ...
G.f. = q^5 - 10*q^17 + 35*q^29 - 30*q^41 - 105*q^53 + 238*q^65 - 260*q^89 + ...
		

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

Crossrefs

Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^10, {x, 0, n}]; (* Michael Somos, Jun 24 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^10, n))}; /* Michael Somos, Jun 09 2011 */
    
  • PARI
    {a(n) = local(m, x, y, z); if( n<0, 0, m = 12*n + 5; z = 0; for( x = -sqrtint(m), sqrtint(m), if( x%6 != 1, next); if( issquare( m - x^2, &y), if( y%6 == 2, y = -y); if( y%6 == 4, z += x*y * (x*x - y*y) ))); z / 6)}; /* Michael Somos, Jun 09 2011 */
    
  • PARI
    {a(n) = local(A, p, e, i, x, y, a0, a1); if( n<0, 0, n = 12*n + 5; A = factor(n); 1 / 48 * prod( k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p<5, 0, if( p%12 > 6, if( e%2, 0, p^(2*e)), forstep( i = 1, sqrtint( p), 2, if( issquare( p - i^2, &y), x=i; break)); if( p%12 == 5, a1 = 8 * x*y * (x-y) * (x+y) * (-1)^((x%6==1) + (y%6==4)), a1 = 2 * (x^2-y^2+2*x*y) * (x^2-y^2-2*x*y) * (-1)^(x%6==3) ); a0 = 1; y = a1; for( i=2, e, x = y * a1 - p^4 * a0; a0=a1; a1=x); a1 )))))}; /* Michael Somos, Jun 24 2013 */

Formula

Expansion of f(-x)^10 in powers of x where f() is a Ramanujan theta function.
Expansion of q^(-5/12) * eta(q)^10 in powers of q. - Michael Somos, Jun 09 2011
a(n) = b(12*n + 5) / 48 where b() is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 7 or 11 (mod 12), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 or 5 (mod 12). - Michael Somos, Jun 24 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 12^5 (t/i)^5 f(t) where q = exp(2 Pi i t). - Michael Somos, Jan 06 2014
G.f.: Product_{k>0} (1 - x^k)^10. a(49*n + 20) = 2401 * a(n).
48 * a(n) = A234565(3*n + 1). a(7*n + 2) = 0 unless n == 2 (mod 7). - Michael Somos, Jul 18 2014
a(0) = 1, a(n) = -(10/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-10*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M = p_1*...*p_k be a positive integer whose prime factors p_i (not necessarily distinct) are congruent to 7 (mod 12) or 11 (mod 12). Then a( M^2*n + 10*(M^2 - 1)/24 ) = M^4*a(n). See Cooper et al., Theorem 1. - Peter Bala, Dec 01 2020

A234937 Triangle read by rows of coefficients of polynomials generated by the Han/Nekrasov-Okounkov formula.

Original entry on oeis.org

1, 1, -1, 4, -5, 1, 18, -29, 12, -1, 120, -218, 119, -22, 1, 840, -1814, 1285, -345, 35, -1, 7920, -18144, 14674, -5205, 805, -51, 1, 75600, -196356, 185080, -79219, 16450, -1624, 70, -1, 887040, -2427312, 2515036, -1258628, 324569, -43568, 2954, -92, 1
Offset: 0

Views

Author

William J. Keith, Jan 01 2014

Keywords

Comments

Coefficients of the polynomials p_n(b) defined by Product_{k>0} (1-q^k)^(b-1) = Sum n! p_n(b) q^n.
Each row is length 1+n, starting from n=0, and consists of the coefficients of one of the p_n(b).
A210590 is an unsigned version using the form preferred by Nekrasov and Okounkov. This is the form for which Guo-Niu Han's reference below gives the hooklength formula:
p_n(b) = Sum_{lambda partitioning n} Product_{h_{ij} in lambda} (1-b/(h_{ij}^2)).
Coefficients reduced mod 5 are those of 2 times Pascal's triangle and an alternating sign. Other primes have slightly more complex reduction behavior. See second link.
Lehmer's conjecture on the tau function states that the evaluation at b=25 (A000594) is never 0.
The general diagonal and column are probably of combinatorial interest.

Examples

			The coefficient of q^3 in the indeterminate power is (1/6) (18-29b+12b^2-b^3).
		

Crossrefs

Row entries sum to 0.
A210590 is the unsigned version.
Starting from row 0: final entry of row n, (-1)^n (A033999).
From row 1: next-to-last entry of row n, (-1)^(n-1) * n(3n-1)/2 (signed version of A000326).
First entry of row n, n! * p(n) (A053529).
Second entry of row n, -1 * n! * (sum of reciprocals of all parts in partitions of n) (negatives of A057623).
(Sum of absolute values of row entries)/n!: A000712.
Evaluations at various powers of b, divided by n!, enumerate multipartitions or powers of the eta function. Some special cases that appear in the OEIS:
b=0: A000041, the partition numbers,
b=2: A010815, from Euler's Pentagonal Number Theorem,
b=-1: A000712, partitions into 2 colors,
b=-11: A005758, reciprocal of the square root of the tau function,
b=-23: A006922, reciprocal of the tau function,
b=13: A000735, square root of the tau function,
b=25: A000594, Ramanujan's tau function.

Programs

  • Mathematica
    nn=10;
    Clear[b]; PolyTable = Table[0, {n, 1, nn}];
    PolyTable[[1]]=1-b;
    For[n = 2, n <= nn, n++,
    PolyTable[[n]] = Simplify[(((n - 1)!)*(b - 1))*(Sum[
           PolyTable[[n - m]]*(-1*DivisorSigma[1, m]/((n - m)!)), {m, 1,
            n - 1}] + (-1*DivisorSigma[1, n]))]];
    LongTable = Table[Table[
       Which[k == 0, PartitionsP[n]*n!, k > 0,
        Coefficient[Expand[PolyTable[[n]]], b^k]], {k, 0, n}], {n, 1, nn}];
    Flatten[PrependTo[LongTable,1]]

Formula

E.g.f.: Product_{k>0} (1-q^k)^(b-1).
Recurrence: With p_0(b) = 1, p_n(b) = (n-1)!*(b-1)*Sum_{m=1..n} -sigma(m)*p_{n-m}(b) / (n-m)!, sigma being the divisor function.
Showing 1-10 of 14 results. Next