cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A008441 Number of ways of writing n as the sum of 2 triangular numbers.

Original entry on oeis.org

1, 2, 1, 2, 2, 0, 3, 2, 0, 2, 2, 2, 1, 2, 0, 2, 4, 0, 2, 0, 1, 4, 2, 0, 2, 2, 0, 2, 2, 2, 1, 4, 0, 0, 2, 0, 4, 2, 2, 2, 0, 0, 3, 2, 0, 2, 4, 0, 2, 2, 0, 4, 0, 0, 0, 4, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 4, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 2, 2, 0, 6, 0, 2, 2, 0, 0, 2, 2, 0, 1, 4, 2, 2, 4, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). The present sequence gives the expansion coefficients of psi(q)^2.
Also the number of positive odd solutions to equation x^2 + y^2 = 8*n + 2. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 + 3*x^6 + 2*x^7 + 2*x^9 + 2*x^10 + 2*x^11 + ...
G.f. for B(q) = q * A(q^4) = q + 2*q^5 + q^9 + 2*q^13 + 2*q^17 + 3*q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag. See p. 139 Example (iv).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • R. W. Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, in Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Dekker, 1990. See p. 279.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. [See Pi_q.]
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916. See vol. 2, p 31, Article 272.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 165.

Crossrefs

Cf. A004020, A005883, A104794, A052343, A199015 (partial sums).
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A274621 (reciprocal series).

Programs

  • Haskell
    a052343 = (flip div 2) . (+ 1) . a008441
    -- Reinhard Zumkeller, Jul 25 2014
    
  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 420); A[2]; /* Michael Somos, Jan 31 2015 */
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A002654 := proc(n) sigmamr(n,4,1)-sigmamr(n,4,3) ; end proc:
    A008441 := proc(n) A002654(4*n+1) ; end proc:
    seq(A008441(n),n=0..90) ; # R. J. Mathar, Mar 23 2011
  • Mathematica
    Plus@@((-1)^(1/2 (Divisors[4#+1]-1)))& /@ Range[0, 104] (* Ant King, Dec 02 2010 *)
    a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 2, 0, q] EllipticTheta[ 3, 0, q], {q, 0, n + 1/4}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q]^2, {q, 0, 2 n + 1/2}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := If[ n < 0, 0, DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]];  (* Michael Somos, Jun 08 2014 *)
    QP = QPochhammer; s = QP[q^2]^4/QP[q]^2 + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
    TriangleQ[n_] := IntegerQ@Sqrt[8n +1]; Table[Count[FrobeniusSolve[{1, 1}, n], {?TriangleQ}], {n, 0, 104}] (* Robert G. Wilson v, Apr 15 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^(k * (k+1)/2), x * O(x^n))^2, n) )};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv(n, d, (-1)^(d\2)))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 / eta(x + A)^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 14 2005 */
    
  • PARI
    { my(q='q+O('q^166)); Vec(eta(q^2)^4 / eta(q)^2) } \\ Joerg Arndt, Apr 16 2017
    
  • Sage
    ModularForms( Gamma1(8), 1, prec=420).1; # Michael Somos, Jun 08 2014
    

Formula

This sequence is the quadrisection of many sequences. Here are two examples:
a(n) = A002654(4n+1), the difference between the number of divisors of 4*n+1 of form 4*k+1 and the number of form 4*k-1. - David Broadhurst, Oct 20 2002
a(n) = b(4*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Sep 14 2005
G.f.: (Sum_{k>=0} x^((k^2 + k)/2))^2 = (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k in Z} x^(k^2)).
Expansion of Jacobi theta (theta_2(0, sqrt(q)))^2 / (4 * q^(1/4)).
Sum[d|(4n+1), (-1)^((d-1)/2) ].
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 4 * v * w^2 - u^2 * w. - Michael Somos, Sep 14 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1 * u3 - (u2 - u6) * (u2 + 3*u6). - Michael Somos, Sep 14 2005
Expansion of Jacobi k/(4*q^(1/2)) * (2/Pi)* K(k) in powers of q^2. - Michael Somos, Sep 14 2005. Convolution of A001938 and A004018. This appears in the denominator of the Jacobi sn and cn formula given in the Abramowitz-Stegun reference, p. 575, 16.23.1 and 16.23.2, where m=k^2. - Wolfdieter Lang, Jul 05 2016
G.f.: Sum_{k>=0} a(k) * x^(2*k) = Sum_{k>=0} x^k / (1 + x^(2*k + 1)).
G.f.: Sum_{k in Z} x^k / (1 - x^(4*k + 1)). - Michael Somos, Nov 03 2005
Expansion of psi(x)^2 = phi(x) * psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 8 sequence [ 1, -1, -1, 0, 1, 1, -1, 0, ...]. - Michael Somos, Jan 25 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A104794.
Euler transform of period 2 sequence [ 2, -2, ...].
G.f.: q^(-1/4) * eta(q^2)^4 / eta(q)^2. See also the Fine reference.
a(n) = Sum_{k=0..n} A010054(k)*A010054(n-k). - Reinhard Zumkeller, Nov 03 2009
A004020(n) = 2 * a(n). A005883(n) = 4 * a(n).
Convolution square of A010054.
G.f.: Product_{k>0} (1 - x^(2*k))^2 / (1 - x^(2*k-1))^2.
a(2*n) = A113407(n). a(2*n + 1) = A053692(n). a(3*n) = A002175(n). a(3*n + 1) = 2 * A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jun 08 2014
G.f.: exp( Sum_{n>=1} 2*(x^n/n) / (1 + x^n) ). - Paul D. Hanna, Mar 01 2016
a(n) = A001826(2+8*n) - A001842(2+8*n), the difference between the number of divisors 1 (mod 4) and 3 (mod 4) of 2+8*n. See the Ono et al. link, Corollary 1, or directly the Niven et al. reference, p. 165, Corollary (3.23). - Wolfdieter Lang, Jan 11 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 - x^1)^2 / (1 - x^3 + x^2*(1 - x^2)^2 / (1 - x^5 + x^3*(1 - x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
Given g.f. A(x), and B(x) is the g.f. for A079006, then B(x) = A(x^2) / A(x) and B(x) * B(x^2) * B(x^4) * ... = 1 / A(x). - Michael Somos, Apr 20 2017
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
From Paul D. Hanna, Aug 10 2019: (Start)
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) - x^(2*k))^(n-k) = Sum_{n>=0} a(n)*x^(2*n).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) + x^(2*k))^(n-k) * (-1)^k = Sum_{n>=0} a(n)*x^(2*n). (End)
From Peter Bala, Jan 05 2021: (Start)
G.f.: Sum_{n = -oo..oo} x^(4*n^2+2*n) * (1 + x^(4*n+1))/(1 - x^(4*n+1)). See Agarwal, p. 285, equation 6.20 with i = j = 1 and mu = 4.
For prime p of the form 4*k + 3, a(n*p^2 + (p^2 - 1)/4) = a(n).
If n > 0 and p are coprime then a(n*p + (p^2 - 1)/4) = 0. The proofs are similar to those given for the corresponding results for A115110. Cf. A000729.
For prime p of the form 4*k + 1 and for n not congruent to (p - 1)/4 (mod p) we have a(n*p^2 + (p^2 - 1)/4) = 3*a(n) (since b(n), where b(4*n+1) = a(n), is multiplicative). (End)
From Peter Bala, Mar 22 2021: (Start)
G.f. A(q) satisfies:
A(q^2) = Sum_{n = -oo..oo} q^n/(1 - q^(4*n+2)) (set z = q, alpha = q^2, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^(2*n)/(1 - q^(4*n+1)) (set z = q^2, alpha = q, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^n/(1 + q^(2*n+1))^2 = Sum_{n = -oo..oo} q^(3*n+1)/(1 + q^(2*n+1))^2. (End)
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) + 2 * Sum_{n>=1, k>=0} (-1)^k * q^(k*(k+2*n+1)+n). - Mamuka Jibladze, May 17 2021
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) * (1 + q^(2*k+1))/(1 - q^(2*k+1)). - Mamuka Jibladze, Jun 06 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022

Extensions

More terms and information from Michael Somos, Mar 23 2003

A020757 Numbers that are not the sum of two triangular numbers.

Original entry on oeis.org

5, 8, 14, 17, 19, 23, 26, 32, 33, 35, 40, 41, 44, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 80, 82, 85, 86, 89, 95, 96, 98, 103, 104, 107, 109, 113, 116, 117, 118, 122, 124, 125, 128, 129, 131, 134, 138, 140, 143, 145, 147, 149, 152, 155, 158, 161, 162, 166, 167
Offset: 1

Views

Author

Keywords

Comments

A052343(a(n)) = 0. - Reinhard Zumkeller, May 15 2006
Numbers of the form (p^(2k+1)s-1)/4, where p is a prime number of the form 4n+3, and s is a number of the form 4m+3 and prime to p, are not expressible as the sum of two triangular numbers. See Satyanarayana (1961), Theorem 2. - Hans J. H. Tuenter, Oct 11 2009
An integer n is in this sequence if and only if at least one 4k+3 prime factor in the canonical form of 4n+1 occurs with an odd exponent. - Ant King, Dec 02 2010
A nonnegative integer n is in this sequence if and only if A000729(n) = 0. - Michael Somos, Feb 13 2011
4*a(n) + 1 are terms of A022544. - XU Pingya, Aug 05 2018 [Actually, k is here if and only if 4*k + 1 is in A022544. - Jianing Song, Feb 09 2021]
Integers m such that the smallest number of triangular numbers which sum to m is 3, hence A061336(a(n)) = 3. - Bernard Schott, Jul 21 2022

Examples

			3 = 0 + 3 and 7 = 1 + 6 are not terms, but 8 = 1 + 1 + 6 is a term.
		

Crossrefs

Complement of A020756.
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), this sequence (m=6), A322430 (m=8), A322431 (m=10), A322432 (m=14), A322043 (m=15), A322433 (m=26).

Programs

  • Haskell
    a020757 n = a020757_list !! (n-1)
    a020757_list = filter ((== 0) . a052343) [0..]
    -- Reinhard Zumkeller, Jul 25 2014
    
  • Mathematica
    data = Reduce[m (m + 1) + n (n + 1) == 2 # && 0 <= m && 0 <= n, {m, n}, Integers] & /@ Range[167]; Position[data, False] // Flatten  (* Ant King, Dec 05 2010 *)
    t = Array[PolygonalNumber, 18, 0]; Complement[Range@ 169, Flatten[ Outer[ Plus, t, t]]] (* Robert G. Wilson v, Aug 07 2024 *)
  • PARI
    is(n)=my(m9=n%9,f); if(m9==5 || m9==8, return(1)); f=factor(4*n+1); for(i=1,#f~, if(f[i,1]%4==3 && f[i,2]%2, return(1))); 0 \\ Charles R Greathouse IV, Mar 17 2022

A286354 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, 0, 0, 1, -4, 0, 2, 0, 0, 1, -5, 2, 5, 1, 1, 0, 1, -6, 5, 8, 0, 2, 0, 0, 1, -7, 9, 10, -5, 0, -2, 1, 0, 1, -8, 14, 10, -15, -4, -7, 0, 0, 0, 1, -9, 20, 7, -30, -6, -10, 0, -2, 0, 0, 1, -10, 27, 0, -49, 0, -5, 8, 0, -2, 0, 0, 1, -11, 35, -12, -70, 21, 11, 25, 9, 0, 1, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2017

Keywords

Comments

A(n,k) number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts with k types of each part.

Examples

			A(3,2) = 2 because we have [2, 1], [2', 1], [2, 1'], [2', 1'] (number of partitions of 3 into an even number of distinct parts with 2 types of each part), [3], [3'] (number of partitions of 3 into an odd number of distinct parts with 2 types of each part) and 4 - 2 = 2.
Square array begins:
1,  1,  1,  1,  1,   1,  ...
0, -1, -2, -3, -4,  -5,  ...
0, -1, -1,  0,  2,   5,  ...
0,  0,  2,  5,  8,  10,  ...
0,  0,  1,  0, -5, -15,  ...
0,  1,  2,  0, -4,  -6,  ...
		

Crossrefs

Main diagonal gives A008705.
Antidiagonal sums give A299105.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, -k*
          add(numtheory[sigma](j)*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x, x, Infinity]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[(-1)^i*x^(i*(3*i + 1)/2), {i, -Infinity, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^j)^k.
G.f. of column k: (Sum_{j=-inf..inf} (-1)^j*x^(j*(3*j+1)/2))^k.
Column k is the Euler transform of period 1 sequence [-k, -k, -k, ...].

A002171 Glaisher's chi numbers. a(n) = chi(4*n + 1).

Original entry on oeis.org

1, -2, -3, 6, 2, 0, -1, -10, 0, -2, 10, 6, -7, 14, 0, -10, -12, 0, -6, 0, 9, -4, 10, 0, 18, -2, 0, 6, -14, -18, -11, 12, 0, 0, -22, 0, 20, 14, -6, 22, 0, 0, 23, -26, 0, -18, 4, 0, -14, -2, 0, -20, 0, 0, 0, 12, 3, 30, 26, 0, -30, 14, 0, 0, 2, 30, -28, -26, 0, -18, 10, 0, -13, -34, 0, 0, 20, 0, 26, 22, 0, -6, 0, 6, 18, 0
Offset: 0

Views

Author

Keywords

Comments

Number 49 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Glaisher (1884) essentially defines chi(n) as the sum over all solutions of n = x^2 + y^2 with even y and nonnegative odd x of x * (-1)^((x + y - 1)/2) and proves that it is multiplicative. If n is not == 1 (mod 4) then chi(n) = 0. - Michael Somos, Jun 18 2012
Denoted by g_2(q) in Cynk and Hulek on page 8 as the unique weight 2 level 32 newform. - Michael Somos, Aug 24 2012
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472. - Michael Somos, Aug 24 2012
The weight 2 level N = 32 newform (eta(q^4)*eta(q^8))^2 belongs to the elliptic curves y^2 = x^3 + 4*x , y^2 = x^3 - x, y^2 = x^3 - 11*x - 14 and y^2 = x^3 - 11*x + 14. See the Martin-Ono link, Theorem 2, row N = 32, and the Cremona link, Table 1, N = 32. - Wolfdieter Lang, Dec 26 2016

Examples

			G.f. = 1 - 2*x - 3*x^2 + 6*x^3 + 2*x^4 - x^6 - 10*x^7 - 2*x^9 + 10*x^10 + ...
G.f. (eta(q^4)*eta(q^8))^2 = q - 2*q^5 - 3*q^9 + 6*q^13 + 2*q^17 - q^25 - 10*q^29 - 2*q^37 + 10*q^41 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(32), 2), 341); A[2] - 2*A[6]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    qEigenform( EllipticCurve( [0, 0, 0, -1, 0]), 341); /* Michael Somos, Jun 12 2014 */
    
  • Magma
    Basis( CuspForms( Gamma0(32), 2), 341)[1]; /* Michael Somos, Mar 25 2015 */
  • Mathematica
    max=100; f[x_] := Product[(1-x^k)*(1-x^(2k)), {k, 1, max}]^2; CoefficientList[ Series[ f[x], {x, 0, max}], x](* Jean-François Alcover, Jan 04 2012, after g.f. *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jun 18 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ x^2]^3, {x, 0, n}]; (* Michael Somos, Jun 18 2012 *)
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, -1, 0], 1), 4*n + 1))}; /* Michael Somos, Jul 27 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A))^2, n))}; /* Michael Somos, Jul 27 2006 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, A = factor( 4*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%4==3, (-p)^(e/2) * (1 + (-1)^e) / 2, forstep( i=1, sqrtint(p), 2, if( issquare( p - i^2, &y), x=i; break)); a0 = 1; y = a1 = x * (-1)^((x + y)\2) * if(y, 2, 1); for(i=2, e, x = y * a1 - p * a0; a0=a1; a1=x); a1 )))}; /* Michael Somos, Jun 18 2012 */
    

Formula

Expansion of (psi(x) * phi(-x))^2 = phi(-x) * f(-x^2)^3 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q)^2 * eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [-2, -4, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative with b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) and b(p) = p - number of solutions of y^2 = x^3 - x (mod p). - Michael Somos, Jul 27 2006. b(p(n)) = A278720(n). - Wolfdieter Lang, Dec 26 2016
G.f.: (Product_{k>0} (1 - x^k) * (1 - x^(2*k)))^2.
G.f.: Sum_{k>=0} a(k) * x^(4*k + 1) = (Sum_{k>=0} (-1)^k * (2*k + 1) * x^(2*k + 1)^2) * (Sum_{k in Z} (-1)^k * x^(4*k)^2).
Coefficients of L-series for elliptic curve "32a2": y^2 = x^3 - x.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: exp(2*Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

A005369 a(n) = 1 if n is of the form m(m+1), else 0.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

This is essentially the q-expansion of the Jacobi theta function theta_2(q). (In theta_2 one has to ignore the initial factor of 2*q^(1/4). See also A010054.) - N. J. A. Sloane, Aug 03 2014
For n > 0, a(n) is the number of partitions of n into two parts such that the larger part is equal to the square of the smaller part. - Wesley Ivan Hurt, Dec 23 2020

Examples

			G.f. = 1 + x^2 + x^6 + x^12 + x^20 + x^30 + x^42 + x^56 + x^72 + x^90 + ...
G.f. = q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + q^225 + q^289 + ...
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A002378. Partial sums give A000194.

Programs

  • Haskell
    a005369 = a010052 . (+ 1) . (* 4) -- Reinhard Zumkeller, Jul 05 2014
    
  • Maple
    A005369 := proc(n)
        if issqr(1+4*n) then
            if type( sqrt(1+4*n)-1,'even') then
                1;
            else
                0;
            end if;
        else
            0;
        end if;
    end proc:
    seq(A005369(n),n=0..80) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a005369[n_] := If[IntegerQ[Sqrt[4 # + 1]], 1, 0] & /@ Range[0, n]; a005369[100] (* Michael De Vlieger, Jan 02 2015 *)
    a[ n_] := SquaresR[ 1, 4 n + 1] / 2; (* Michael Somos, Feb 22 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
    QP = QPochhammer; s = QP[q^4]^2/QP[q^2] + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
    nmax = 200; CoefficientList[Series[Sum[x^(k*(k + 1)), {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2020 *)
  • PARI
    {a(n) = if( n<0, 0, issquare(4*n + 1))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / eta(x^2 + A), n))};
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A005369(n): return int(is_square((n<<2)|1)) # Chai Wah Wu, Jun 07 2025

Formula

Expansion of q^(-1/4) * eta(q^4)^2 / eta(q^2) in powers of q.
Euler transform of period 4 sequence [ 0, 1, 0, -1, ...].
G.f.: Product_{k>0} (1 - x^(4*k)) / (1 - x^(4*k-2)) = f(x^2, x^6) where f(, ) is Ramanujan's general theta function.
From Michael Somos, Apr 13 2005: (Start)
Given g.f. A(x), then B(q) = (q*A(q^4))^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 4*v*w^2 - u^2*w.
Given g.f. A(x), then B(q) = q*A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u2^2*u6 - u1*u6^3 - u3^3*u2. (End)
a(n) = b(4*n + 1) where b() = A098108() is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 if p>2. - Michael Somos, Jun 06 2005
G.f.: 1/2 x^{-1/4}theta_2(0,x), where theta_2 is a Jacobi theta function. - Franklin T. Adams-Watters, Jun 29 2009
a(A002378(n)) = 1; a(A078358(n)) = 0. - Reinhard Zumkeller, Jul 05 2014
a(n) = floor(sqrt(n+1)+1/2)-floor(sqrt(n)+1/2). - Mikael Aaltonen, Jan 02 2015
a(2*n) = A010054(n).
a(n) = A000729(n)(mod 2). - John M. Campbell, Jul 16 2016
For n > 0, a(n) = Sum_{k=1..floor(n/2)} [k^2 = n-k], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Dec 23 2020

Extensions

Additional comments from Michael Somos, Apr 29 2003
Erroneous formula removed by Reinhard Zumkeller, Jul 05 2014

A000735 Expansion of Product_{k>=1} (1 - x^k)^12.

Original entry on oeis.org

1, -12, 54, -88, -99, 540, -418, -648, 594, 836, 1056, -4104, -209, 4104, -594, 4256, -6480, -4752, -298, 5016, 17226, -12100, -5346, -1296, -9063, -7128, 19494, 29160, -10032, -7668, -34738, 8712, -22572, 21812, 49248, -46872, 67562, 2508, -47520, -76912, -25191, 67716
Offset: 0

Views

Author

Keywords

Comments

Glaisher (1905, 1907) calls this sequence {Omega(m): m=1,3,5,7,9,11,...}. - N. J. A. Sloane, Nov 24 2018
Number 9 of the 74 eta-quotients listed in Table I of Martin (1996). See g.f. B(q) below: cusp form of weight 6 and level 4.
Grosswald uses b_n where b_{2n+1} = a(n).
Cynk and Hulek on page 14 in "The Example of Ahlgren" refer to a_p of the unique normalized weight 6 level 4 cusp form. - Michael Somos, Aug 24 2012
Expansion of q^(-1/2) * k(q) * k'(q)^4 * (K(q) / (Pi/2))^6 / 4 in powers of q where k(), k'(), K() are Jacobi elliptic functions. In Glaisher 1907 denoted by Omega(m) defined in section 62 on page 37. - Michael Somos, May 19 2013

Examples

			G.f. A(x) = 1 - 12*x + 54*x^2 - 88*x^3 - 99*x^4 + 540*x^5 - 418*x^6 - 648*x^7 + ...
G.f. B(q) = q - 12*q^3 + 54*q^5 - 88*q^7 - 99*q^9 + 540*q^11 - 418*q^13 - 648*q^15 + ...
		

References

  • J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See p. 340.
  • Glaisher, J. W. L. (1906). The arithmetical functions P(m), Q(m), Omega(m). Quart. J. Math, 37, 36-48.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
  • Newman, Morris; A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A209676 is the same except for signs.
This is a bisection of A227239.

Programs

  • Julia
    # DedekindEta is defined in A000594.
    A000735List(len) = DedekindEta(len, 12)
    A000735List(42) |> println # Peter Luschny, Mar 10 2018
  • Magma
    Basis( CuspForms( Gamma0(4), 6), 85) [1]; /* Michael Somos, Dec 09 2013 */
    
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> -12): seq(a(n), n=0..45); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    CoefficientList[ Take[ Expand[ Product[(1 - x^k)^12, {k, 42}]], 42], x]
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^12, {q, 0, n}]; (* Michael Somos, May 19 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - q^k, {k, n}]^12, {q, 0, n}]; (* Michael Somos, May 19 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( eta(x + x * O(x^n))^12, n))}; /* Michael Somos, Sep 21 2005 */
    
  • Sage
    CuspForms( Gamma0(4), 6, prec=85).0; # Michael Somos, May 28 2013
    

Formula

Expansion of q^(-1/2) * eta(q)^12 in powers of q.
Euler transform of period 1 sequence [-12, ...]. - Michael Somos, Sep 21 2005
Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^4*w^2 + 48*(u*v*w)^2 + 4906*u^2*w^4 - u^6. - Michael Somos, Sep 21 2005
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^5 * b(p^(e-2)). - Michael Somos, Mar 08 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 64 (t/i)^6 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 24 2012
G.f.: (Product_{k>0} (1 - x^k))^12.
A000145(n) = A029751(n) + 16*a(n). - Michael Somos, Sep 21 2005
a(n) = (-1)^n * A209676(n).
Convolution inverse of A005758. Convolution square of A000729.
a(0) = 1, a(n) = -(12/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-12*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018

A104794 Expansion of theta_4(q)^2 in powers of q.

Original entry on oeis.org

1, -4, 4, 0, 4, -8, 0, 0, 4, -4, 8, 0, 0, -8, 0, 0, 4, -8, 4, 0, 8, 0, 0, 0, 0, -12, 8, 0, 0, -8, 0, 0, 4, 0, 8, 0, 4, -8, 0, 0, 8, -8, 0, 0, 0, -8, 0, 0, 0, -4, 12, 0, 8, -8, 0, 0, 0, 0, 8, 0, 0, -8, 0, 0, 4, -16, 0, 0, 8, 0, 0, 0, 4, -8, 8, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Michael Somos, Mar 26 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Quadratic AGM theta functions: a(q) (see A004018), b(q) (A104794), c(q) (A005883).
In the Arithmetic-Geometric Mean, if a = theta_3(q)^2, b = theta_4(q)^2 then a' := (a+b)/2 = theta_3(q^2)^2, b' := sqrt(a*b) = theta_4(q^2)^2.

Examples

			G.f. = 1 - 4*q + 4*q^2 + 4*q^4 - 8*q^5 + 4*q^8 - 4*q^9 + 8*q^10 - 8*q^13 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 576.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987.

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A104794List(len) = JacobiTheta4(len, 2)
    A104794List(102) |> println # Peter Luschny, Mar 12 2018
  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 100); A[1] - 4*A[2] + 4*A[3]; /* Michael Somos, Jan 31 2015 */
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2, {q, 0, n}];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[1 - m] EllipticK[m] / (Pi/2), {q, 0, n}]];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(1/4) EllipticK[m] / (Pi/2), {q, 0, 2 n}]];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ -q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 06 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 4 DivisorSum[ n, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jun 06 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * 4 * sumdiv(n, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 / eta(x^2 + A)^2, n ))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 4 * sum( k=1, n, (-x)^k / (1 + x^(2*k)), x * O(x^n)), n))};
    

Formula

Expansion of phi(-q)^2 = 2 * phi(q^2)^2 - phi(q)^2 = (phi(q) - 2*phi(q^4))^2 = f(-q)^3 / psi(q) = phi(-q^2)^4 / phi(q)^2 = psi(-q)^4 / psi(q^2)^2 = psi(q)^2 * chi(-q)^6 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (1-k^2)^(1/2) K(k^2) / (Pi/2) in powers of q where q is Jacobi's nome, k is the elliptic modulus and K() is the complete elliptic integral of the first kind.
Expansion of K(k^2) / (Pi/2) in powers of -q where q is Jacobi's nome, k is the elliptic modulus and K() is the complete elliptic integral of the first kind. - Michael Somos, Jun 08 2015
Expansion of eta(q)^4 / eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [ -4, -2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u^2 + v^2) - 2*u*w^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 - 2*u1*u3 + 4*u2*u6 - 3*u3^2.
Moebius transform is period 8 sequence [ -4, 8, 4, 0, -4, -8, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 16 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A008441.
G.f.: theta_4(q)^2 = (Sum_{k in Z} (-q)^(k^2))^2 = (Product_{k>0} (1 - q^(2*k)) * (1 - q^(2*k - 1))^2)^2.
G.f.: 1 + 4 * Sum_{k>0} (-x)^k / (1 + x^(2*k)). - Michael Somos, Jun 08 2015
a(4*n + 3) = 0. a(n) = (-1)^n * A004018(n) = a(2*n). a(4*n + 1) = -4 * A008441(n). a(n) = -4 * A113652(n) unless n=0. a(6*n + 2) = 4 * A122865(n). a(6*n + 4) = 4 * A122856(n). a(8*n + 1) = -4 * A113407(n). a(8*n + 5) = -8 * A053692(n).
a(n) = a(9*n) = A204531(8*n) = A246950(8*n) = A256014(9*n) = A258210(n). - Michael Somos, Jun 08 2015
Convolution inverse of A001934. Convolution with A000729 is A227695. - Michael Somos, Jun 08 2015
G.f.: 2 * Sum_{k in Z} (-1)^k * x^(k*(k + 1)/2) / (1 + x^k). - Michael Somos, Nov 05 2015
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017
G.f.: exp(2*Sum_{k>=1} (sigma(k) - sigma(2*k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

A339705 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^6.

Original entry on oeis.org

1, -6, -6, 9, -6, 30, -6, 10, 9, 30, -6, -24, -6, 30, 30, -30, -6, -24, -6, -24, 30, 30, -6, -84, 9, 30, 10, -24, -6, -114, -6, 0, 30, 30, 30, -54, -6, 30, 30, -84, -6, -114, -6, -24, -24, 30, -6, 96, 9, -24, 30, -24, -6, -84, 30, -84, 30, 30, -6, -24, -6, 30, -24, 11, 30
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339321(n/d) * a(d).
a(p^k) = A000729(k) for prime p.

A215472 Expansion of (psi(x) * phi(-x)^4)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -14, 81, -238, 322, 0, -429, 82, 0, 2162, -3038, -1134, 2401, 2482, 0, -6958, 3332, 0, 1442, 0, 6561, -4508, -9758, 0, -1918, 18802, 0, 9362, -24638, -19278, 14641, 14756, 0, 0, 6562, 0, -1148, -33998, 26082, -20398, 0, 0, 28083, 49042, 0, -64078, -30268
Offset: 0

Views

Author

Michael Somos, Aug 12 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is a member of an infinite family of integer weight level 8 modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.

Examples

			1 - 14*x + 81*x^2 - 238*x^3 + 322*x^4 - 429*x^6 + 82*x^7 + 2162*x^9 + ...
q - 14*q^5 + 81*q^9 - 238*q^13 + 322*q^17 - 429*q^25 + 82*q^29 + 2162*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^14 / QPochhammer[ x^2]^4, {x, 0, n}] (* Michael Somos, Sep 05 2013 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^7 / eta(x^2 + A)^2 )^2, n))}

Formula

Expansion of q^(-1/4) * eta(q)^14 / eta(q^2)^4 in powers of q.
Expansion of q^(-1/4) * ( eta(q)^4 * eta(q^2)^2 * eta(q^4)^4 + 4 * eta(q^2)^4 * eta(q^4)^2 * eta(q^8)^4 ) in powers of q. - Michael Somos, Sep 05 2013
Euler transform of period 2 sequence [ -14, -10, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 128 (t/i)^5 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030212.
a(n) = (-1)^n * A209942(n). a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = 81 * a(n).
a(n) = A030212(4*n + 1). - Michael Somos, Sep 05 2013

A215601 Expansion of phi(-x)^2 * f(-x)^6 + 32 * x * psi(-x)^2 * f(-x^4)^6 in powers of x where phi(), psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 22, -27, -18, -94, 0, 359, -130, 0, 214, -230, -594, -343, 518, 0, 830, -396, 0, 1098, 0, 729, -2068, -1670, 0, 594, 598, 0, -1746, 2002, 486, -1331, 5148, 0, 0, -1606, 0, -2860, -3514, 2538, 286, 0, 0, -1873, -4082, 0, 3942, 4708, 0, 5362, 1174, 0, -5060
Offset: 0

Views

Author

Michael Somos, Aug 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by g_4(q) in Cynk and Hulek on page 8 as the unique weight 4 Hecke eigenform of level 32 with complex multiplication by i. - Michael Somos, Aug 24 2012
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.

Examples

			G.f. = 1 + 22*x - 27*x^2 - 18*x^3 - 94*x^4 + 359*x^6 - 130*x^7 + 214*x^9 - 230*x^10 + ..
G.f. = q + 22*q^5 - 27*q^9 - 18*q^13 - 94*q^17 + 359*q^25 - 130*q^29 + 214*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^5 / QPochhammer[ x^2])^2 + 32 x (QPochhammer[ x] QPochhammer[ x^4]^4 / QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jan 11 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^5 / eta(x^2 + A) )^2 + 32 * x * ( eta(x + A) * eta(x^4 + A)^4 / eta(x^2 + A) )^2, n))};
    
  • PARI
    {a(n) = local(A, p, e, x, y, a0, a1, w=3); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 0, if( p%4==3, if( e%2, 0, (-p)^(w*e/2)), y=-sum( i=0, p-1, kronecker( i^3-i, p)); a0=2; a1=y; for( i=2, w, x=y*a1 -p*a0; a0=a1; a1=x); y=a1; a0=1; a1=y; for( i=2, e, x=y*a1 -p^w*a0; a0=a1; a1=x); a1)))))};

Formula

Expansion of q^(-1/4) * (eta(q)^5 / eta(q^2))^2 + 32 * (eta(q) * eta(q^4)^4 / eta(q^2))^2 in powers of q.
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^3 * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^10 (t/i)^4 f(t) where q = exp(2 Pi i t).
a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = -27 * a(n). a(n) = A215600(2*n).
Showing 1-10 of 14 results. Next