cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002171 Glaisher's chi numbers. a(n) = chi(4*n + 1).

Original entry on oeis.org

1, -2, -3, 6, 2, 0, -1, -10, 0, -2, 10, 6, -7, 14, 0, -10, -12, 0, -6, 0, 9, -4, 10, 0, 18, -2, 0, 6, -14, -18, -11, 12, 0, 0, -22, 0, 20, 14, -6, 22, 0, 0, 23, -26, 0, -18, 4, 0, -14, -2, 0, -20, 0, 0, 0, 12, 3, 30, 26, 0, -30, 14, 0, 0, 2, 30, -28, -26, 0, -18, 10, 0, -13, -34, 0, 0, 20, 0, 26, 22, 0, -6, 0, 6, 18, 0
Offset: 0

Views

Author

Keywords

Comments

Number 49 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Glaisher (1884) essentially defines chi(n) as the sum over all solutions of n = x^2 + y^2 with even y and nonnegative odd x of x * (-1)^((x + y - 1)/2) and proves that it is multiplicative. If n is not == 1 (mod 4) then chi(n) = 0. - Michael Somos, Jun 18 2012
Denoted by g_2(q) in Cynk and Hulek on page 8 as the unique weight 2 level 32 newform. - Michael Somos, Aug 24 2012
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472. - Michael Somos, Aug 24 2012
The weight 2 level N = 32 newform (eta(q^4)*eta(q^8))^2 belongs to the elliptic curves y^2 = x^3 + 4*x , y^2 = x^3 - x, y^2 = x^3 - 11*x - 14 and y^2 = x^3 - 11*x + 14. See the Martin-Ono link, Theorem 2, row N = 32, and the Cremona link, Table 1, N = 32. - Wolfdieter Lang, Dec 26 2016

Examples

			G.f. = 1 - 2*x - 3*x^2 + 6*x^3 + 2*x^4 - x^6 - 10*x^7 - 2*x^9 + 10*x^10 + ...
G.f. (eta(q^4)*eta(q^8))^2 = q - 2*q^5 - 3*q^9 + 6*q^13 + 2*q^17 - q^25 - 10*q^29 - 2*q^37 + 10*q^41 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(32), 2), 341); A[2] - 2*A[6]; /* Michael Somos, Jun 12 2014 */
    
  • Magma
    qEigenform( EllipticCurve( [0, 0, 0, -1, 0]), 341); /* Michael Somos, Jun 12 2014 */
    
  • Magma
    Basis( CuspForms( Gamma0(32), 2), 341)[1]; /* Michael Somos, Mar 25 2015 */
  • Mathematica
    max=100; f[x_] := Product[(1-x^k)*(1-x^(2k)), {k, 1, max}]^2; CoefficientList[ Series[ f[x], {x, 0, max}], x](* Jean-François Alcover, Jan 04 2012, after g.f. *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jun 18 2012 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ x^2]^3, {x, 0, n}]; (* Michael Somos, Jun 18 2012 *)
  • PARI
    {a(n) = if( n<0, 0, ellak( ellinit( [0, 0, 0, -1, 0], 1), 4*n + 1))}; /* Michael Somos, Jul 27 2006 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^2 + A))^2, n))}; /* Michael Somos, Jul 27 2006 */
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, A = factor( 4*n + 1); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p%4==3, (-p)^(e/2) * (1 + (-1)^e) / 2, forstep( i=1, sqrtint(p), 2, if( issquare( p - i^2, &y), x=i; break)); a0 = 1; y = a1 = x * (-1)^((x + y)\2) * if(y, 2, 1); for(i=2, e, x = y * a1 - p * a0; a0=a1; a1=x); a1 )))}; /* Michael Somos, Jun 18 2012 */
    

Formula

Expansion of (psi(x) * phi(-x))^2 = phi(-x) * f(-x^2)^3 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(-1/4) * eta(q)^2 * eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [-2, -4, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative with b(p^e) = b(p) * b(p^(e-1)) - p * b(p^(e-2)) and b(p) = p - number of solutions of y^2 = x^3 - x (mod p). - Michael Somos, Jul 27 2006. b(p(n)) = A278720(n). - Wolfdieter Lang, Dec 26 2016
G.f.: (Product_{k>0} (1 - x^k) * (1 - x^(2*k)))^2.
G.f.: Sum_{k>=0} a(k) * x^(4*k + 1) = (Sum_{k>=0} (-1)^k * (2*k + 1) * x^(2*k + 1)^2) * (Sum_{k in Z} (-1)^k * x^(4*k)^2).
Coefficients of L-series for elliptic curve "32a2": y^2 = x^3 - x.
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32 (t/i)^2 f(t) where q = exp(2 Pi i t).
G.f.: exp(2*Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

A000729 Expansion of Product_{k >= 1} (1 - x^k)^6.

Original entry on oeis.org

1, -6, 9, 10, -30, 0, 11, 42, 0, -70, 18, -54, 49, 90, 0, -22, -60, 0, -110, 0, 81, 180, -78, 0, 130, -198, 0, -182, -30, 90, 121, 84, 0, 0, 210, 0, -252, -102, -270, 170, 0, 0, -69, 330, 0, -38, 420, 0, -190, -390, 0, -108, 0, 0, 0, -300, 99, 442, 210, 0, 418, -294, 0, 0, -510, 378, -540, 138, 0
Offset: 0

Views

Author

Keywords

Comments

This is Glaisher's function lambda(m). It appears to be defined only for odd m, and lambda(4t-1) = 0 (t >= 1), lambda(4t+1) = a(t) (t >= 0). - N. J. A. Sloane, Nov 25 2018
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 36 of the 74 eta-quotients listed in Table I of Martin (1996).
Dickson, v.2, p. 295 briefly states a result of Glaisher, 1883, pp 212-215. This result is that a(n) is the sum over all solutions of 16*n + 4 = x^2 + y^2 + z^2 + w^2 in nonnegative odd integers of chi(x) and is also the sum over all solutions of 8*n + 2 = x^2 + y^2 in nonnegative odd integers of chi(x) * chi(y) where chi(x) = x if x == 1 (mod 4) and -x if x == 3 (mod 4). [Michael Somos, Jun 18 2012]
Denoted by g_3(q) in Cynk and Hulek on page 8 as the unique weight 3 Hecke eigenform of level 16 with complex multiplication by i. - Michael Somos, Aug 24 2012
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472. - Michael Somos, Aug 24 2012

Examples

			G.f. = 1 - 6*x + 9*x^2 + 10*x^3 - 30*x^4 + 11*x^6 + 42*x^7 - 70*x^9 + 18*x^10 + ...
G.f. = q - 6*q^5 + 9*q^9 + 10*q^13 - 30*q^17 + 11*q^25 + 42*q^29 - 70*q^37 + ...
		

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 295, and vol. 3, p. 134.
  • J. W. L. Glaisher, On the representations of a number as a sum of four squares, and on some allied arithmetical functions, Quarterly Journal of Pure and Applied Mathematics, 36 (1905), 305-358. See page 340.
  • J. W. L. Glaisher, The arithmetical functions P(m), Q(m), Omega(m), Quart. J. Math, 37 (1906), 36-48.
  • Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Powers of Euler's product: A000594, A000727 - A000731, A000735, A000739, A002107, A010815 - A010840.

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 3), 274); A[2] - 6*A[6] + 9*A[10] + 10*A[14] - 30*A[18]; /* Michael Somos, May 17 2015 */
    
  • Magma
    A := Basis( CuspForms( Gamma1(16), 3), 274); A[1] - 6*A[5]; /* Michael Somos, Jan 09 2017 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1/16 EllipticTheta[ 4, 0, q] EllipticTheta[ 2, 0, q]^4 EllipticTheta[ 3, 0, q], {q, 0, 4 n + 1}]; (* Michael Somos, Jun 18 2012 *)
    a[ n_] := If[ n < 0, 0, With[ {m = Sqrt[ 16 n + 4]}, SeriesCoefficient[ Sum[ Mod[k, 2] q^k^2, {k, m}]^3 Sum[ KroneckerSymbol[ -4, k] k q^k^2, {k, m}], {q, 0, 16 n + 4}]]]; (* Michael Somos, Jun 12 2012 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[(1 - m) m ] (EllipticK[m] 2/Pi)^3 / (4 q^(1/2)), {q, 0, 2 n}]]; (* Michael Somos, Jun 22 2012 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, n}]^6, {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^6, {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ (-1/4) EllipticThetaPrime[ 1, -Pi/4, q] EllipticTheta[ 1, -Pi/4, q]^3, {q, 0, 4 n + 1}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ (-1/16) EllipticThetaPrime[ 1, 0, q] EllipticTheta[ 1, -Pi/2, q]^3, {q, 0, 4 n + 1}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^6, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 4*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 0, p%4==3, if( e%2, 0, p^e), forstep( i=1, sqrtint(p), 2, if( issquare( p - i^2, &y), x=i; break)); a0=1; a1 = y = 2*(x^2 - y^2); for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Aug 21 2006 */
    
  • PARI
    {a(n)=local(tn=(sqrtint(8*n+1)+1)\2);polcoeff(sum(m=0,tn,(1+2*m)^2*x^(m^2+m)+x*O(x^n)) + 2*sum(m=0,tn,sum(k=1,tn,(1+4*(m^2+m-k^2))*x^(m^2+m+k^2)+x*O(x^n))),n)} /* Paul D. Hanna, Mar 15 2010 */
    

Formula

Expansion of q^(-1/4)/16 * theta_2(q)^4 * theta_3(q) * theta_4(q) in powers of q. - [Dickson, v. 3, p. 134] from Stieltjes footnote 160. Michael Somos, Jun 18 2012
Expansion of q^(-1/2) / 4 * k * k' * (K / (pi/2))^3 in powers of q^2 where k, k', K are Jacobi elliptic functions. - Michael Somos, Jun 22 2012
G.f.: Product_{k>0}(1 - x^k)^6.
Given g.f. A(x), then A(q^4) = f(-q^4)^6 = phi(q) * phi(-q) * psi(q^2)^4 where phi(), psi(), f() are Ramanujan theta functions. - Michael Somos, Aug 23 2006
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^e * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - b(p^(e-2)) * p^2 if p == 1 (mod 4) and b(p) = 2 * (x^2 - y^2) where p = x^2 + y^2 and y is even. - Michael Somos, Aug 23 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 64 (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 24 2012
G.f.: Sum_{k>=0} a(k) * x^(4*k + 1) = (1/2) * Sum_{u,v in Z} (u*u - 4*v*v) * x^(u*u + 4*v*v). - Michael Somos, Jun 14 2007
G.f.: eta(x)^6 = Sum_{n>=0} (1+2n)^2*x^(n^2+n) + 2*Sum_{n>=0,k>=1} (1 + 4(n^2+n-k^2))*x^(n^2+n+k^2) - from the Milne and Leininger reference. [Paul D. Hanna, Mar 15 2010]
a(0) = 1, a(n) = -(6/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-6*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
Let M be a positive integer whose prime factors are all congruent to 3 (mod 4) - see A004614. Then a( M^2*n + (M^2 - 1)/4 ) = M^2*a(n). See Cooper et al., equation 5. - Peter Bala, Dec 01 2020
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = p^e * (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = ((x+y*i)^(2*e+2) - (x-y*i)^(2*e+2))/((x+y*i)^2 - (x-y*i)^2) if p == 1 (mod 4) where p = x^2 + y^2 and x is odd. - Jianing Song, Mar 19 2022

A215472 Expansion of (psi(x) * phi(-x)^4)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -14, 81, -238, 322, 0, -429, 82, 0, 2162, -3038, -1134, 2401, 2482, 0, -6958, 3332, 0, 1442, 0, 6561, -4508, -9758, 0, -1918, 18802, 0, 9362, -24638, -19278, 14641, 14756, 0, 0, 6562, 0, -1148, -33998, 26082, -20398, 0, 0, 28083, 49042, 0, -64078, -30268
Offset: 0

Views

Author

Michael Somos, Aug 12 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is a member of an infinite family of integer weight level 8 modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.

Examples

			1 - 14*x + 81*x^2 - 238*x^3 + 322*x^4 - 429*x^6 + 82*x^7 + 2162*x^9 + ...
q - 14*q^5 + 81*q^9 - 238*q^13 + 322*q^17 - 429*q^25 + 82*q^29 + 2162*q^37 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^14 / QPochhammer[ x^2]^4, {x, 0, n}] (* Michael Somos, Sep 05 2013 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A)^7 / eta(x^2 + A)^2 )^2, n))}

Formula

Expansion of q^(-1/4) * eta(q)^14 / eta(q^2)^4 in powers of q.
Expansion of q^(-1/4) * ( eta(q)^4 * eta(q^2)^2 * eta(q^4)^4 + 4 * eta(q^2)^4 * eta(q^4)^2 * eta(q^8)^4 ) in powers of q. - Michael Somos, Sep 05 2013
Euler transform of period 2 sequence [ -14, -10, ...].
a(n) = b(4*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * p^(2*e) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 128 (t/i)^5 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A030212.
a(n) = (-1)^n * A209942(n). a(9*n + 5) = a(9*n + 8) = 0. a(9*n + 2) = 81 * a(n).
a(n) = A030212(4*n + 1). - Michael Somos, Sep 05 2013

A215600 Expansion of psi(-x)^2 * f(-x)^6 in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -8, 22, -16, -27, 40, -18, 80, -94, -40, 0, -48, 359, -80, -130, -320, 0, 160, 214, 400, -230, -152, -594, 416, -343, 240, 518, -400, 0, 200, 830, -592, -396, -776, 0, -400, 1098, 200, 0, 1120, 729, -552, -2068, 272, -1670, 800, 0, 400, 594, 1480, 598, 48
Offset: 0

Views

Author

Michael Somos, Aug 16 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 - 8*x + 22*x^2 - 16*x^3 - 27*x^4 + 40*x^5 - 18*x^6 + 80*x^7 - 94*x^8 + ...
q - 8*q^3 + 22*q^5 - 16*q^7 - 27*q^9 + 40*q^11 - 18*q^13 + 80*q^15 - 94*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^6 EllipticTheta[ 2, Pi/4, q^(1/2)]^2 / (2 q^(1/4)), {q, 0, n}] (* Michael Somos, Sep 03 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^8 / QPochhammer[ q^2, q^4]^2, {q, 0, n}] (* Michael Somos, Sep 03 2013 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^4 * eta(x^4 + A) / eta(x^2 + A))^2, n))}

Formula

Expansion of psi(-x)^8 * chi(-x^2)^6 = f(-x)^8 / chi(-x^2)^2 in powers of x where psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 03 2013
Expansion of q^(-1/2) * (eta(q)^4 * eta(q^4) / eta(q^2))^2 in powers of q.
Euler transform of period 4 sequence [ -8, -6, -8, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^15 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A225564. - Michael Somos, Sep 03 2013
Convolution square of A215597.
a(2*n) = A215601(n). - Michael Somos, Sep 03 2013

A258739 Expansion of (f(-x)^3 / f(-x^2))^6 - 64 * x * (f(-x^2)^3 / f(-x))^6 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -82, -243, -1194, 2242, 0, 3599, 2950, 0, -12242, -20950, 19926, -16807, 7294, 0, 18950, 97908, 0, -88806, 0, 59049, -183844, 51050, 0, -92142, -98002, 0, 246486, 118706, 290142, -161051, -38868, 0, 0, 75658, 0, -241900, 47614, -544806, -493658, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.
Denoted by g_6(q) in Cynk and Hulek on page 8 as a level 32 cusp form of weight 6.

Examples

			G.f. = 1 - 82*x - 243*x^2 - 1194*x^3 + 2242*x^4 + 3599*x^6 + 2950*x^7 + ...
G.f. = q - 82*q^5 - 243*q^9 - 1194*q^13 + 2242*q^17 + 3599*q^25 + 2950*q^29 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(32), 6), 165); A[1]  - 82*A[5] - 243*A[9] - 1194*A[13] + 2242*A[16];
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^3 / QPochhammer[ x^2])^6 - 64 x (QPochhammer[ x^2]^3 / QPochhammer[ x])^6, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^2 + A))^6 - 64 * x * (eta(x^2 + A)^3 / eta(x + A))^6, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if(n<0, 0, n = 4*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if(p==2, 0, p%4==3, if(e%2, 0, (-p)^(5*e/2)), y = -sum(i=0, p-1, kronecker(i^3-i, p)); a0=2; a1=y; for(i=2, 5, x=y*a1 -p*a0; a0=a1; a1=x); y=a1; a0=1; a1=y; for(i=2, e, x=y*a1 -p^5*a0; a0=a1; a1=x); a1)))};
    

Formula

Expansion of q^(-1/4) * ((eta(-q)^3 / eta(-q^2))^6 - 64 * (eta(-q^2) / eta(-q))^6) in powers of q.
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(5*e/2) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = -(32^3) (t/i)^6 f(t) where q = exp(2 Pi i t).
Showing 1-5 of 5 results.