A000149 a(n) = floor(e^n).
1, 2, 7, 20, 54, 148, 403, 1096, 2980, 8103, 22026, 59874, 162754, 442413, 1202604, 3269017, 8886110, 24154952, 65659969, 178482300, 485165195, 1318815734, 3584912846, 9744803446, 26489122129, 72004899337, 195729609428, 532048240601, 1446257064291
Offset: 0
References
- Federal Works Agency, Work Projects Administration for the City of NY, Tables of the Exponential Function. National Bureau of Standards, Washington, DC, 1939.
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 230.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..300
- R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
- Johan Kok, Integer sequences with conjectured relation with certain graph parameters of the family of linear Jaco graphs, arXiv:2507.16500 [math.CO], 2025. See p. 9.
- G. Whyman, N. Ohtori, E. Shulzinger and Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461 (2016), 595-601.
- Index entries for sequences related to Benford's law
Crossrefs
Programs
-
Haskell
a000149 = floor . (exp 1 ^) a000149_list = let e = exp 1 in map floor $ iterate (* e) 1 -- Reinhard Zumkeller, Mar 17 2015
-
Mathematica
a[n_]:=Floor[E^n]; (* Vladimir Joseph Stephan Orlovsky, Dec 12 2008 *) Floor[E^Range[0,30]] (* Harvey P. Dale, Apr 01 2012 *)
-
PARI
a(n) = floor(exp(n)); \\ Arkadiusz Wesolowski, Nov 26 2011
-
PARI
apply( A000149(n)=exp(n)\1, [0..30]) \\ An error message will say so if default(realprecision) must be increased, for large n. - M. F. Hasler, May 27 2018
-
Python
from sympy import floor, E def a(n): return floor(E**n) print([a(n) for n in range(29)]) # Michael S. Branicky, Jul 20 2021
Formula
a(n)^(1/n) converges to e because |1-a(n)/e^n|=|e^n-a(n)|/e^n < e^(-n) and so a(n)^(1/n)=(e^n*(1+o(1)))^(1/n)=e*(1+o(1)). - Hieronymus Fischer, Jan 22 2006
Comments