cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000149 a(n) = floor(e^n).

Original entry on oeis.org

1, 2, 7, 20, 54, 148, 403, 1096, 2980, 8103, 22026, 59874, 162754, 442413, 1202604, 3269017, 8886110, 24154952, 65659969, 178482300, 485165195, 1318815734, 3584912846, 9744803446, 26489122129, 72004899337, 195729609428, 532048240601, 1446257064291
Offset: 0

Views

Author

Keywords

Comments

A000079(n) <= a(n) <= A000244(n); for n > 0: A064780(n) = a(n+1) - a(n). - Reinhard Zumkeller, Mar 17 2015
Satisfies Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017

References

  • Federal Works Agency, Work Projects Administration for the City of NY, Tables of the Exponential Function. National Bureau of Standards, Washington, DC, 1939.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 230.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection: A116472.
Cf. A001113, A003619, A000079, A000244, A064780 (first differences, apart from initial term).
Cf. A000227 (round e^n), A001671 (ceiling e^n).

Programs

  • Haskell
    a000149 = floor . (exp 1 ^)
    a000149_list = let e = exp 1 in map floor $ iterate (* e) 1
    -- Reinhard Zumkeller, Mar 17 2015
    
  • Mathematica
    a[n_]:=Floor[E^n]; (* Vladimir Joseph Stephan Orlovsky, Dec 12 2008 *)
    Floor[E^Range[0,30]] (* Harvey P. Dale, Apr 01 2012 *)
  • PARI
    a(n) = floor(exp(n)); \\ Arkadiusz Wesolowski, Nov 26 2011
    
  • PARI
    apply( A000149(n)=exp(n)\1, [0..30]) \\ An error message will say so if default(realprecision) must be increased, for large n. - M. F. Hasler, May 27 2018
    
  • Python
    from sympy import floor, E
    def a(n):  return floor(E**n)
    print([a(n) for n in range(29)]) # Michael S. Branicky, Jul 20 2021

Formula

a(n)^(1/n) converges to e because |1-a(n)/e^n|=|e^n-a(n)|/e^n < e^(-n) and so a(n)^(1/n)=(e^n*(1+o(1)))^(1/n)=e*(1+o(1)). - Hieronymus Fischer, Jan 22 2006