A000371 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*2^(2^k).
2, 2, 10, 218, 64594, 4294642034, 18446744047940725978, 340282366920938463334247399005993378250, 115792089237316195423570985008687907850547725730273056332267095982282337798562
Offset: 0
Examples
Let n = 2, S = {a,b}, and P = {0,a,b,ab}. There are ten subsets of P whose union is S: {ab}, {a,b}, {a,ab}, {b,ab}, {a,b,ab}, and the empty set together with the same five. - _Marc LeBrun_, Nov 10 2010
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 165.
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 170.
- S. Muroga, Threshold Logic and Its Applications. Wiley, NY, 1971, p. 38 and 214.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. G. Wagner, Covers of finite sets, Proc. 4th S-E Conf. Combin., Graph Theory, Computing, Congress. Numer. 8 (1973), 515-520.
Links
- R. Baumann and H. Strass, On the number of bipolar Boolean functions, 2014, preprint.
- R. Baumann and H. Strass, On the number of bipolar Boolean functions, Journal of Logic and Computation, 27(8) (2017), 2431-2449.
- Thomas M. A. Fink, Regulatory motifs: structural and functional building blocks of genetic computation, arXiv:2208.14996 [q-bio.MN], 2022.
- Goto, Eiichi, and Hidetosi Takahasi, Some Theorems Useful in Threshold Logic for Enumerating Boolean Functions, in Proceedings International Federation for Information Processing (IFIP) Congress, 1962, pp. 747-752. [Annotated scans of certain pages]
- R. K. Guy, Letter to N. J. A. Sloane, Mar 1974
- T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
- M. Klazar, Extremal problems for ordered hypergraphs, arXiv:math/0305048 [math.CO], 2003.
- A. J. Macula, Covers of a finite set, Math. Mag., 67 (1994), 141-144.
- S. Muroga, Threshold Logic and Its Applications, Wiley, NY, 1971 [Annotated scans of a few pages]
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Cover
- Index entries for sequences related to Boolean functions
Crossrefs
Programs
-
Magma
[&+[(-1)^(n-k)*Binomial(n, k)*2^(2^k): k in [0..n]]: n in [0..10]]; // Vincenzo Librandi, Dec 28 2015
-
Maple
f:=n->add((-1)^(n-k)*binomial(n,k)*2^(2^k),k=0..n);
-
Mathematica
Table[Sum[(-1)^(n-k) Binomial[n,k]2^(2^k),{k,0,n}],{n,0,10}] (* Harvey P. Dale, Oct 17 2011 *)
-
PARI
a(n)=sum(k=0,n,(-1)^(n-k)*binomial(n,k)<<(2^k)) \\ Charles R Greathouse IV, Jan 02 2012
-
PARI
a(n) = sum(k=0, n, (-1)^k*n!/k!/(n-k)!*2^(2^(n-k))); \\ Altug Alkan, Dec 29 2015
Formula
The coefficient of x^k in the polynomial p_n(x) = Sum_{j=0..n} (-1)^j binomial(n,j) * (x+1)^2^(n-j) gives the number of covers of a set of size n where the covers have k elements. Also, there is a recurrence: f_n(k) = k, if n = 0, and f_n(k) = f_{n-1}(k^2) - f_{n-1}(k), if n > 0, that gives a(n) = f_n(2) and p_n(x) = f_n(x+1). - David W. Wilson, Nov 11 2010
E.g.f.: Sum(exp((2^n-1)*x)*log(2)^n/n!, n=0..infinity). - Vladeta Jovovic, May 30 2004
a(n) ~ 2^(2^n). - Charles R Greathouse IV, Jan 02 2012
a(n) = 2*A003465(n). - Maurizio De Leo, Feb 27 2015
Extensions
Since this sequence arises in several different contexts, I replaced the old definition with an explicit formula. - N. J. A. Sloane, Nov 23 2010
Comments