cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226271 Index of 1/n in the Fibonacci (or rabbit) ordering of the positive rationals.

Original entry on oeis.org

1, 4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 1

Views

Author

M. F. Hasler, Jun 01 2013

Keywords

Comments

The Fibonacci ordering of the rationals (cf. A226080) is the sequence of rationals produced from the initial vector [1] by appending iteratively the new rationals obtained by applying the map t-> (t+1, 1/t) to the vector (cf. example).
Apart from initial terms, the same as A001611=(1, 2, 2, 3, 4, 6,...), A020706=(4,6,9,...), A048577=(3, 4, 6, ...), A000381=(2, 3, 4, ...).

Examples

			Starting from the vector [1] and applying the map t->(1+t,1/t), we get [2,1] (but ignore the number 1 which already occurred earlier), then [3,1/2], then [4,1/3,3/2,2] (where we ignore 2), etc. This yields the sequence (1,2,3,1/2,4,1/3,3/2,5,1/4,4/3,5/2,2/3,....) The unit fractions 1=1/1, 1/2, 1/3, ... occur at positions 1,4,6,9,...
		

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1},{1,4,6,9},40] (* Harvey P. Dale, Feb 04 2016 *)
  • PARI
    A226271(n)=if(n>1,fibonacci(n+2))+1
    
  • PARI
    {k=1;print1(s=1,",");U=Set(g=[1]);for(n=1,9,U=setunion(U,Set(g=select(f->!setsearch(U,f), concat(apply(t->[t+1,k/t],g))))); for(i=1,#g,numerator(g[i])==1&&print1(s+i","));s+=#g)} \\ for illustrative purpose
    
  • PARI
    Vec(-x*(2*x^3+2*x^2-2*x-1)/((x-1)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, May 11 2016

Formula

a(n) = 2*a(n-1)-a(n-3) for n>4. G.f.: -x*(2*x^3+2*x^2-2*x-1) / ((x-1)*(x^2+x-1)). - Colin Barker, Jun 03 2013
a(n) = 1+(2^(-1-n)*((1-sqrt(5))^n*(-3+sqrt(5))+(1+sqrt(5))^n*(3+sqrt(5))))/sqrt(5) for n>1. - Colin Barker, May 11 2016
E.g.f.: -2*(1 + x) + exp(x) + (3*sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(x/2)/5. - Ilya Gutkovskiy, May 11 2016

A036999 Restricted permutations.

Original entry on oeis.org

6, 9, 12, 18, 27, 42, 66, 105, 168, 270, 435, 702, 1134, 1833, 2964, 4794, 7755, 12546, 20298, 32841, 53136, 85974, 139107, 225078, 364182, 589257, 953436, 1542690, 2496123, 4038810, 6534930, 10573737, 17108664, 27682398, 44791059
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Equals A022086(n+3) + 3.

Programs

  • Magma
    [6] cat [3*Fibonacci(n+3)+3: n in [0..40]]; // Vincenzo Librandi, Jul 01 2017
  • Mathematica
    Join[{6}, Table[3 Fibonacci[n+3] + 3, {n, 0, 40}]] (* or *) CoefficientList[Series[3 (2 - x - 2 x^2) / ((x^2 + x - 1) (x - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, Jul 01 2017 *)

Formula

G.f.: 3*(2-x-2*x^2)/((x^2+x-1)*(x-1)). - Vincenzo Librandi, Jul 01 2017
Showing 1-2 of 2 results.