cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000385 Convolution of A000203 with itself.

Original entry on oeis.org

1, 6, 17, 38, 70, 116, 185, 258, 384, 490, 686, 826, 1124, 1292, 1705, 1896, 2491, 2670, 3416, 3680, 4602, 4796, 6110, 6178, 7700, 7980, 9684, 9730, 12156, 11920, 14601, 14752, 17514, 17224, 21395, 20406, 24590, 24556, 28920, 27860, 34112, 32186, 38674, 37994, 43980, 42136, 51646, 47772, 56749, 55500, 64316, 60606, 73420, 67956, 80500, 77760, 88860, 83810, 102284, 92690, 108752, 105236, 120777, 112672, 135120, 123046, 145194, 138656, 157512, 146580, 177515, 159396, 185744, 179122
Offset: 1

Views

Author

Keywords

Comments

Convolution of A340793 and A024916. - Omar E. Pol, Feb 17 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.

Crossrefs

Column k=2 of A319083 (shifted).

Programs

  • Haskell
    a000385 n = sum $ zipWith (*) sigmas $ reverse sigmas where
       sigmas = take n a000203_list
    -- Reinhard Zumkeller, Sep 20 2011
    
  • Maple
    f:= n -> 5/12*numtheory:-sigma[3](n+1)-(5+6*n)/12*numtheory:-sigma(n+1):
    map(f, [$1..100]); # Robert Israel, Sep 17 2018
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, k] DivisorSigma[1, n-k+1], {k, 1, n}];
    Array[a, 100] (* Jean-François Alcover, Aug 01 2018 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)*sigma(n-k+1)); \\ Michel Marcus, Nov 10 2016
    
  • PARI
    a(n) = my(f = factor(n+1)); (5 * sigma(f, 3) - (6*n + 5) * sigma(f)) / 12; \\ Amiram Eldar, Jan 04 2025
    
  • Python
    from sympy import factorint
    def A000385(n):
        f = factorint(n+1).items()
        return(5*prod((p**(3*(e+1))-1)//(p**3-1) for p,e in f)-(5+6*n)*prod((p**(e+1)-1)//(p-1) for p, e in f))//12 # Chai Wah Wu, Jul 25 2024

Formula

a(n) = Sum_{k=1..n} A000203(k)*A000203(n-k+1).
G.f.: (1/x)*(Sum_{k>=1} k*x^k/(1 - x^k))^2. - Ilya Gutkovskiy, Nov 10 2016
a(5*n+1)==0 (mod 5) and a(7*n+6)==0 (mod 7). See Bonciocat link. - Michel Marcus, Nov 10 2016
a(n) = (5/12)*A001158(n+1) - ((5+6*n)/12)*A000203(n+1). - Robert Israel, Sep 17 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 864. - Vaclav Kotesovec, Apr 02 2019

Extensions

More terms from Sean A. Irvine, Nov 14 2010