A000385 Convolution of A000203 with itself.
1, 6, 17, 38, 70, 116, 185, 258, 384, 490, 686, 826, 1124, 1292, 1705, 1896, 2491, 2670, 3416, 3680, 4602, 4796, 6110, 6178, 7700, 7980, 9684, 9730, 12156, 11920, 14601, 14752, 17514, 17224, 21395, 20406, 24590, 24556, 28920, 27860, 34112, 32186, 38674, 37994, 43980, 42136, 51646, 47772, 56749, 55500, 64316, 60606, 73420, 67956, 80500, 77760, 88860, 83810, 102284, 92690, 108752, 105236, 120777, 112672, 135120, 123046, 145194, 138656, 157512, 146580, 177515, 159396, 185744, 179122
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Nicolae Ciprian Bonciocat, Congruences for the Convolution of Divisor sum function, Bull. Greek Math. Soc., Vol 47 (2003), pp. 19-29.
- MathOverflow, Searching for a proof for a series identity.
- Srinivasa Ramanujan, On certain arithmetical functions, Transactions of the Cambridge Philosophical Society, 22, No.9 (1916), 169- 184 (see Table IV, line 1).
- Jacques Touchard, On prime numbers and perfect numbers, Scripta Math., 129 (1953), 35-39. [Annotated scanned copy]
Programs
-
Haskell
a000385 n = sum $ zipWith (*) sigmas $ reverse sigmas where sigmas = take n a000203_list -- Reinhard Zumkeller, Sep 20 2011
-
Maple
f:= n -> 5/12*numtheory:-sigma[3](n+1)-(5+6*n)/12*numtheory:-sigma(n+1): map(f, [$1..100]); # Robert Israel, Sep 17 2018
-
Mathematica
a[n_] := Sum[DivisorSigma[1, k] DivisorSigma[1, n-k+1], {k, 1, n}]; Array[a, 100] (* Jean-François Alcover, Aug 01 2018 *)
-
PARI
a(n) = sum(k=1, n, sigma(k)*sigma(n-k+1)); \\ Michel Marcus, Nov 10 2016
-
PARI
a(n) = my(f = factor(n+1)); (5 * sigma(f, 3) - (6*n + 5) * sigma(f)) / 12; \\ Amiram Eldar, Jan 04 2025
-
Python
from sympy import factorint def A000385(n): f = factorint(n+1).items() return(5*prod((p**(3*(e+1))-1)//(p**3-1) for p,e in f)-(5+6*n)*prod((p**(e+1)-1)//(p-1) for p, e in f))//12 # Chai Wah Wu, Jul 25 2024
Formula
G.f.: (1/x)*(Sum_{k>=1} k*x^k/(1 - x^k))^2. - Ilya Gutkovskiy, Nov 10 2016
a(5*n+1)==0 (mod 5) and a(7*n+6)==0 (mod 7). See Bonciocat link. - Michel Marcus, Nov 10 2016
Sum_{k=1..n} a(k) ~ Pi^4 * n^4 / 864. - Vaclav Kotesovec, Apr 02 2019
Extensions
More terms from Sean A. Irvine, Nov 14 2010
Comments