A000435 Normalized total height of all nodes in all rooted trees with n labeled nodes.
0, 1, 8, 78, 944, 13800, 237432, 4708144, 105822432, 2660215680, 73983185000, 2255828154624, 74841555118992, 2684366717713408, 103512489775594200, 4270718991667353600, 187728592242564421568, 8759085548690928992256, 432357188322752488126152, 22510748754252398927872000
Offset: 1
Examples
For n = 3 there are 3^2 = 9 rooted labeled trees on 3 nodes, namely (with o denoting a node, O the root node): o | o o o | \ / O O The first can be labeled in 6 ways and contains nodes at heights 1 and 2 above the root, so contributes 6*(1+2) = 18 to the total; the second can be labeled in 3 ways and contains 2 nodes at height 1 above the root, so contributes 3*2=6 to the total, giving 24 in all. Dividing by 3 we get a(3) = 24/3 = 8. For n = 4 there are 4^3 = 64 rooted labeled trees on 4 nodes, namely (with o denoting a node, O the root node): o | o o o o | | \ / o o o o o o o | \ / | \|/ O O O O (1) (2) (3) (4) Tree (1) can be labeled in 24 ways and contains nodes at heights 1, 2, 3 above the root, so contributes 24*(1+2+3) = 144 to the total; tree (2) can be labeled in 24 ways and contains nodes at heights 1, 1, 2 above the root, so contributes 24*(1+1+2) = 96 to the total; tree (3) can be labeled in 12 ways and contains nodes at heights 1, 2, 2 above the root, so contributes 12*(1+2+2) = 60 to the total; tree (4) can be labeled in 4 ways and contains nodes at heights 1, 1, 1 above the root, so contributes 4*(1+1+1) = 12 to the total; giving 312 in all. Dividing by 4 we get a(4) = 312/4 = 78.
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000 (first 100 terms from T. D. Noe)
- Vijayakumar Ambat, Article in the Malayalam newspaper Ayala Manorama - Padhippura, 12 June 2015, that mentions the OEIS, and in particular this sequence.
- V. I. Arnold, Topological classification of complex trigonometric polynomials and the combinatorics of graphs with the same number of edges and vertices, Functional Anal. Appl., 30 (1996), 1-17.
- Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, arXiv:1607.05776 [math.CO], 2016.
- Shalosh B. Ekhad and Doron Zeilberger, Going Back to Neil Sloane's FIRST LOVE (OEIS Sequence A435): On the Total Heights in Rooted Labeled Trees, Version on DZ's home page with more links; Local copy, pdf file only, no active links
- I. P. Goulden and D. M. Jackson, A proof of a conjecture for the number of ramified coverings of the sphere by the torus, arXiv:math/9902009 [math.AG], 1999.
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera, arXiv:math/9902125 [math.AG], 1999.
- I. P. Goulden, D. M. Jackson, and A. Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera Ann. Comb. 4 (2000), no. 1, 27-46. (See Theorem 1.1.)
- Brady Haran, The Number Collector (with Neil Sloane), Numberphile Podcast (2019)
- Andrew Lohr and Doron Zeilberger, On the limiting distributions of the total height on families of trees, Integers (2018) 18, Article #A32.
- T. Kyle Petersen, Exponential generating functions and Bell numbers, Inquiry-Based Enumerative Combinatorics (2019) Chapter 7, Undergraduate Texts in Mathematics, Springer, Cham, 98-99.
- A. Rényi and G. Szekeres, On the height of trees, Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
- Marko Riedel et al., Connected endofunctions with no fixed points, Mathematics Stack Exchange, Dec 2014.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
- J. Riordan and N. J. A. Sloane, Enumeration of rooted trees by total height, J. Austral. Math. Soc., vol. 10 pp. 278-282, 1969.
- N. J. A. Sloane, Page from 1964 notebook showing start of OEIS [includes A000027, A000217, A000292, A000332, A000389, A000579, A000110, A007318, A000058, A000215, A000289, A000324, A234953 (= A001854(n)/n), A000435, A000169, A000142, A000272, A000312, A000111]
- N. J. A. Sloane, Cover of same notebook
- N. J. A. Sloane, Lengths of Cycle Times in Random Neural Networks, Ph. D. Dissertation, Cornell University, February 1967; also Report No. 10, Cognitive Systems Research Program, Cornell University, 1967. This sequence appears on page 119.
- N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
- N. J. A. Sloane, Illustration of a(3) and a(4)
- Yukun Yao and Doron Zeilberger, An Experimental Mathematics Approach to the Area Statistic of Parking Functions, arXiv:1806.02680 [math.CO], 2018.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 3.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Crossrefs
Programs
-
Maple
A000435 := n-> (n-1)!*add (n^k/k!, k=0..n-2); seq(simplify((n-1)*GAMMA(n-1,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
-
Mathematica
f[n_] := (n - 1)! Sum [n^k/k!, {k, 0, n - 2}]; Array[f, 18] (* Robert G. Wilson v, Aug 10 2010 *) nx = 18; Rest[ Range[0, nx]! CoefficientList[ Series[ LambertW[-x] - Log[1 + LambertW[-x]], {x, 0, nx}], x]] (* Robert G. Wilson v, Apr 13 2013 *)
-
PARI
x='x+O('x^30); concat(0, Vec(serlaplace(lambertw(-x)-log(1+lambertw(-x))))) \\ Altug Alkan, Sep 05 2018
-
PARI
A000435(n)=(n-1)*A001863(n) \\ M. F. Hasler, Dec 10 2018
-
Python
from math import comb def A000435(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n # Chai Wah Wu, Apr 25-26 2023
Formula
a(n) = (n-1)! * Sum_{k=0..n-2} n^k/k!.
a(n) = A001864(n)/n.
E.g.f.: LambertW(-x) - log(1+LambertW(-x)). - Vladeta Jovovic, Apr 10 2001
a(n) = A001865(n) - n^(n-1).
a(n) ~ sqrt(Pi/2)*n^(n-1/2). - Vaclav Kotesovec, Aug 07 2013
a(n)/A001854(n) ~ 1/2 [See Renyi-Szekeres, (4.7)]. Also a(n) = Sum_{k=0..n-1} k*A259334(n,k). - David desJardins, Jan 20 2017
a(n) = (n-1)*A001863(n). - M. F. Hasler, Dec 10 2018
Extensions
Additional references from Valery A. Liskovets
Editorial changes by N. J. A. Sloane, Feb 03 2012
Edited by M. F. Hasler, Dec 10 2018
Comments