A035481
Number of n X n symmetric matrices whose first row is 1..n and whose rows and columns are all permutations of 1..n.
Original entry on oeis.org
1, 1, 1, 1, 4, 6, 456, 6240, 10936320, 1225566720, 130025295912960, 252282619805368320, 2209617218725251404267520, 98758655816833727741338583040
Offset: 0
a(3) = 1 because after 123 in the first row and column, 213 is not allowed for the second row, so it must be 231 and thus the third row is 312.
-
(* This script is not suitable for n > 6 *) matrices[n_ /; n > 1] := Module[{a, t, vars}, t = Table[Which[i==1, j, j==1, i, j>i, a[i, j], True, a[j, i]], {i, n}, {j, n}]; vars = Select[Flatten[t], !IntegerQ[#]& ] // Union; t /. {Reduce[And @@ (1 <= # <= n & /@ vars) && And @@ Unequal @@@ t, vars, Integers] // ToRules}]; a[0] = a[1] = 1; a[n_] := Length[ matrices[n]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 6}] (* Jean-François Alcover, Jan 04 2016 *)
A003191
Number of symmetric Latin squares of order 2n with constant diagonal.
Original entry on oeis.org
1, 1, 6, 5972, 1225533120
Offset: 1
- N. T. Gridgeman, Latin squares under restriction and a jumboization, J. Rec. Math., 5 (No. 3, 1972), 198-202.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Daniele Degiorgi (degiorgi(AT)inf.ethz.ch) suggests that this is an erroneous version of
A000438.
A036981
Number of (2n+1) X (2n+1) symmetric matrices each of whose rows is a permutation of 1..(2n+1).
Original entry on oeis.org
1, 6, 720, 31449600, 444733651353600, 10070314878246926155776000, 614972203951464612786852376432607232000
Offset: 0
A000474
Number of nonisomorphic 1-factorizations of complete graph K_{2n}.
Original entry on oeis.org
1, 1, 1, 6, 396, 526915620, 1132835421602062347
Offset: 1
- CRC Handbook of Combinatorial Designs (see pages 655, 720-723).
- Jeffrey H. Dinitz, David K. Garnick, Brendan D. McKay, There are 526,915,620 nonisomorphic one-factorizations of K_{12}. J. Combin. Des. 2 (1994), no. 4, 273-285.
- Petteri Kaski and Patric R. J. Östergård, There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K_{14}, Journal of Combinatorial Designs 17 (2009), pp. 147-159.
- Charles C. Lindner, Eric Mendelsohn, and Alexander Rosa. "On the number of 1-factorizations of the complete graph." Journal of Combinatorial Theory, Series B 20.3 (1976): 265-282.
- E. Seah and D. R. Stinson, On the enumeration of one-factorizations of complete graphs containing prescribed automorphism groups. Math. Comp. 50 (1988), 607-618.
- W. D. Wallis, 1-Factorizations of complete graphs, pp. 593-631 in Jeffrey H. Dinitz and D. R. Stinson, Contemporary Design Theory, Wiley, 1992.
- Petteri Kaski and Patric R. J. Östergård, There are 1,132,835,421,602,062,347 nonisomorphic one-factorizations of K_{14}, arXiv:0801.0202 [math.CO], 2007.
- Joseph Malkevitch, Mathematics and Sports
- Brendan D. McKay and Ian M. Wanless, Enumeration of Latin squares with conjugate symmetry, arXiv:2104.07902 [math.CO], 2021. Table 5 p. 15.
- D. V. Zinoviev, On the number of 1-factorizations of a complete graph [in Russian], Problemy Peredachi Informatsii, 50 (No. 4), 2014, 71-78.
- Index entries for sequences related to tournaments
a(7) communicated by Vesa Linja-aho (vesa.linja-aho(AT)tkk.fi), Aug 02 2008
A035483
Number of 2n X 2n symmetric matrices whose first row is 1..2n and whose rows and columns are all permutations of 1..2n.
Original entry on oeis.org
1, 1, 4, 456, 10936320, 130025295912960, 2209617218725251404267520
Offset: 0
A035482
Number of n X n symmetric matrices each of whose rows is a permutation of 1..n.
Original entry on oeis.org
1, 1, 2, 6, 96, 720, 328320, 31449600, 440952422400, 444733651353600, 471835793808949248000, 10070314878246926155776000, 1058410183156945383046388908032000, 614972203951464612786852376432607232000
Offset: 0
a(3) = 6 because the first row is arbitrary (say, 213) and the rest is then determined. By symmetry the second row has to be 132 or 123 but in order for the third row/column to work it has to be 132.
A120488
Number of nonisomorphic perfect 1-factorizations of complete graph K_{2n}.
Original entry on oeis.org
1, 1, 1, 1, 1, 5, 23, 3155
Offset: 1
- CRC Handbook Combin. Designs, p. 664.
- Barbara M. Maenhaut, Perfect 1-factorizations of complete and complete bipartite graphs, talk given at 31st Australasian Conf. Combin. Math and Combin. Computing, Alice Springs, 2006.
- Petrenyuk, L. and Petrenyuk, A.; Intersection of Perfect One-Factorizations of Complete Graphs, Cybernetics 16 (1980), 6-9.
- Wallis, W. D.; 1-Factorizations of complete graphs, pp. 593-631 in J. H. Dinitz and D R. Stinson, Contemporary Design Theory, Wiley, 1992.
Additional references from David Garnick (dgarnick(AT)gmail.com), Jan 17 2007
A365520
Number of 1-factorizations of complete graph K_{2n} that all share one arbitrary pairing in common.
Original entry on oeis.org
1, 1, 2, 416, 11672064, 266965735243776, 9500592190171594780311552
Offset: 1
For n = 3, given teams A through F (2n), the only two round robin tournaments that share the pairing (AB)(CD)(EF) are:
(AB)(CD)(EF)
(AC)(BE)(DF)
(AD)(BF)(CE)
(AE)(BD)(CF)
(AF)(BC)(DE)
and
(AB)(CD)(EF)
(AC)(BF)(DE)
(AD)(BE)(CF)
(AE)(BC)(DF)
(AF)(BD)(CE)
which agrees with a(3) = 2.
Showing 1-8 of 8 results.
Comments