A000469 1 together with products of 2 or more distinct primes.
1, 6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a000469 n = a000469_list !! (n-1) a000469_list = filter ((== 0) . a010051) a005117_list -- Reinhard Zumkeller, Mar 21 2014
-
Maple
select(numtheory:-issqrfree and not isprime, [$1..1000]); # Robert Israel, Aug 06 2015
-
Mathematica
lst={}; Do[If[SquareFreeQ[n], If[ !PrimeQ[n], AppendTo[lst,n]]], {n,200}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009 *) With[{upto=200},Complement[Select[Range[upto],SquareFreeQ],Prime[ Range[ PrimePi[ upto]]]]] (* Harvey P. Dale, Oct 01 2011 *) Select[Range[200], !PrimeQ[#] && PrimeOmega[#] == PrimeNu[#] &] (* Carlos Eduardo Olivieri, Aug 06 2015 *)
-
PARI
for(n=0,64, if(isprime(n), n+1, if(issquarefree(n),print(n))))
-
PARI
for(n=1,160,if(core(n)*(1-isprime(n))>eulerphi(n),print1(n,",")))
-
Python
from math import isqrt from sympy import primepi, mobius def A000469(n): def f(x): return n+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 02 2024
Formula
N-floor(N/p1) - floor(N/(p2) - ... - floor(N/p(i) + floor(N/(c2) + floor(N/(c3)+ ... + floor(N/c(j)-1 where N is any number; p1,p2 are the primes with p(i) being the first prime > square root of N and c2, c3 are the numbers other than 1 in this sequence with c(j) <= N will yield the number of primes less than or equal to N other than p1, p2, ..., p(i). - Ben Paul Thurston, Aug 15 2007
Sum(n=1, Infinity, 1/a(n)^s) = Zeta(s)/Zeta(2s) - PrimeZeta(s). - Enrique Pérez Herrero, Mar 31 2012
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024
Comments