cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A361321 Lexicographically earliest infinite sequence of distinct elements of A000469 such that, for n > 2, a(n) has a common factor with a(n-1) but not with a(n-2).

Original entry on oeis.org

1, 6, 10, 35, 21, 33, 22, 14, 91, 39, 15, 55, 77, 42, 26, 65, 85, 34, 38, 57, 51, 119, 70, 30, 69, 161, 133, 95, 110, 46, 299, 143, 66, 58, 145, 105, 78, 62, 155, 115, 138, 74, 185, 165, 87, 203, 154, 82, 123, 93, 217, 182, 86, 129, 111, 259, 238, 94, 141, 159
Offset: 1

Views

Author

Keywords

Comments

This sequence is a variant of A360519 where we only consider nonprime squarefree numbers (A000469).
Theorem: a(1) = 1, a(2) = 6; thereafter, a(n) is the smallest nonprime squarefree number m not yet in the sequence such that
(i) gcd(m, a(n-1)) > 1,
(ii) gcd(m, a(n-2)) = 1, and
(iii) m does not divide a(n-1).
Conjecture: The sequence is a permutation of A000469.

Crossrefs

Programs

  • PARI
    See Links section.

A239508 Number of partitions of n into nonprime squarefree numbers, cf. A000469.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 10, 12, 14, 14, 16, 17, 20, 22, 25, 26, 31, 33, 37, 40, 45, 49, 57, 60, 66, 71, 80, 86, 98, 104, 115, 125, 138, 147, 164, 175, 193, 209, 230, 244, 269, 289, 318, 343, 374, 398, 437, 468, 510, 548
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 21 2014

Keywords

Examples

			a(10) = #{10, 6+1+1+1+1, 10x1} = 3;
a(11) = #{10+1, 6+1+1+1+1+1, 11x1} = 3;
a(12) = #{10+1+1, 6+6, 6+6x1, 12x1} = 4;
a(13) = #{10+1+1+1, 6+6+1, 6+7x1, 13x1} = 4;
a(14) = #{14, 10+1+1+1+1, 6+6+1+1, 6+8x1, 14x1} = 5;
a(15) = #{15, 14+1, 10+5x1, 6+6+1+1+1, 6+9x1, 15x1} = 6;
a(16) = #{15+1, 14+1+1, 10+6, 10+6x1, 6+6+4x1, 6+10x1, 16x1} = 7.
		

Crossrefs

Programs

  • Haskell
    a239508 = p a000469_list where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m

A239509 Number of partitions of n into distinct nonprime squarefree numbers, cf. A000469.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 3, 3, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 3, 2, 4, 7, 6, 4, 5, 6, 6, 7, 7, 6, 8, 10, 9, 9, 10, 10, 12, 13, 12, 13, 15, 16, 18, 18, 16, 17, 21, 23, 23, 23, 25, 28, 29, 29, 31, 34, 37, 41, 40, 38, 42, 46
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 21 2014

Keywords

Examples

			a(30) = #{30, 15+14+1, 14+10+6} = 3;
a(31) = #{30+1, 21+10, 15+10+6, 14+10+6+1} = 4;
a(32) = #{26+6, 22+10, 21+10+1, 15+10+6+1} = 4;
a(33) = #{33, 26+6+1, 22+10+1} = 3;
a(34) = #{34, 33+1} = 2;
a(35) = #{35, 34+1, 21+14, 15+14+6} = 4;
a(36) = #{35+1, 30+6, 26+10, 22+14, 21+15, 21+14+1, 15+14+6+1} = 7.
		

Crossrefs

Programs

  • Haskell
    a239509 = p a000469_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 02 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[i*(i+1)/2Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)

A361323 a(n) = k such that A000469(k) = A361321(n).

Original entry on oeis.org

1, 2, 3, 12, 6, 10, 7, 4, 33, 14, 5, 18, 27, 15, 8, 22, 30, 11, 13, 19, 17, 45, 25, 9, 24, 62, 50, 36, 40, 16, 121, 55, 23, 20, 56, 38, 28, 21, 59, 43, 52, 26, 71, 63, 32, 79, 58, 29, 47, 34, 87, 69, 31, 48, 41, 105, 97, 35, 53, 61, 39, 44, 67, 70, 46, 49, 76, 77, 51, 54, 84, 89, 57, 60, 96
Offset: 1

Views

Author

Keywords

Comments

Conjectured to be a permutation of the natural numbers (if not then there exists a k such that A000469(k) does not appear in A361321).

Crossrefs

A361324 a(n) = k such that A361321(k) = A000469(n), or -1 if A000469(n) never appears in A361321.

Original entry on oeis.org

1, 2, 3, 8, 11, 5, 7, 15, 24, 6, 18, 4, 19, 10, 14, 30, 21, 12, 20, 34, 38, 16, 33, 25, 23, 42, 13, 37, 48, 17, 53, 45, 9, 50, 58, 28, 83, 36, 61, 29, 55, 79, 40, 62, 22, 65, 49, 54, 66, 27, 69, 41, 59, 70, 32, 35, 73, 47, 39, 74, 60, 26, 44, 87, 78, 93, 63, 98, 52, 64, 43, 101, 77, 86, 102
Offset: 1

Views

Author

Keywords

Comments

Conjectured to be a permutation of the natural numbers (and if so, -1 will never appear).

Crossrefs

A287299 Number of ways of writing n as a sum of a proper prime power (A246547) and a nonprime squarefree number (A000469).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 2, 2, 1, 1, 3, 0, 1, 1, 4, 3, 0, 2, 2, 2, 0, 3, 4, 3, 1, 2, 6, 3, 1, 0, 5, 4, 2, 2, 4, 3, 0, 2, 3, 5, 0, 1, 3, 4, 3, 2, 4, 3, 3, 4, 5, 4, 0, 2, 5, 5, 0, 4, 6, 2, 1, 1, 7, 3, 1, 2, 7, 4, 2, 4, 5, 5, 1, 3, 6, 5, 1, 3, 6, 6, 3, 4, 4, 4, 2, 4, 7, 6, 3, 1, 4, 4, 0, 4, 6, 5, 2, 2, 7, 5, 2, 1, 7, 8, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, May 23 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n > 108.

Examples

			a(26) = 3 because we have [25, 1], [22, 4] and [16, 10].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[(Sum[Boole[SquareFreeQ[k] && ! PrimeQ[k]] x^k, {k, 1, nmax}]) (Sum[Boole[PrimePowerQ[k] && ! PrimeQ[k]] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    x='x+O('x^120); concat([0, 0, 0, 0, 0], Vec(sum(k=1, 120, (issquarefree(k) && !isprime(k))*x^k) * sum(k=1, 120, (isprimepower(k) && !isprime(k))*x^k))) \\ Indranil Ghosh, May 23 2017

Formula

G.f.: (Sum_{k>=1} x^A246547(k))*(Sum_{k>=1} x^A000469(k)).

A290136 Positive numbers that are not the sum of two nonprime squarefree numbers (A000469).

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 9, 10, 13, 14, 17, 18, 19, 26, 33, 38, 46, 62, 82
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2017

Keywords

Comments

The sequence is conjectured to be complete.

Crossrefs

Programs

  • Mathematica
    nmax = 82; f[x_] := Sum[Boole[SquareFreeQ[k] && PrimeNu[k] != 1] x^k, {k, 1, nmax}]^2; b = Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, nmax}]]; c = Complement[Range[nmax], b][[1 ;; 19]]

A290137 Number of compositions (ordered partitions) of n into nonprime squarefree parts (A000469).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 16, 22, 30, 41, 55, 73, 96, 128, 173, 235, 317, 426, 570, 763, 1023, 1375, 1848, 2484, 3337, 4482, 6017, 8077, 10843, 14562, 19560, 26276, 35292, 47392, 63632, 85443, 114741, 154098, 206957, 277941, 373254, 501244, 673121, 903945, 1213935, 1630246, 2189330
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 20 2017

Keywords

Examples

			a(8) = 4 because we have [6, 1, 1], [1, 6, 1], [1, 1, 6] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - Sum[Boole[SquareFreeQ[k] && PrimeNu[k] != 1] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^A000469(k)).

A290397 Least number of nonprime squarefree numbers (A000469) that add up to n.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 2, 3, 1, 1, 2, 3, 3, 4, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 29 2017

Keywords

Comments

It is conjectured that a(n) <= 5.

Examples

			a(6) = 1 because 6 is already nonprime squarefree number.
a(7) = 2 because 7 = 6 + 1 is a partition of 7 into 2 nonprime squarefree parts and there is no such partition with fewer terms.
		

Crossrefs

A120944 Composite squarefree numbers.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Zak Seidov, Aug 19 2006

Keywords

Comments

Intersection of A002808 and A005117: n > 1 such that A008966(n) * (1-A010051(n)) = 1. - Reinhard Zumkeller, Dec 19 2011

Crossrefs

Cf. A000469 (Nonprime squarefree numbers).
Set of powers: A182853.

Programs

  • Haskell
    a120944 n = a120944_list !! (n-1)
    a120944_list = filter ((== 1) . a008966) a002808_list
    -- Reinhard Zumkeller, Dec 19 2011
    
  • Magma
    [n: n in [6..161] | IsSquarefree(n) and not IsPrime(n)]; // Bruno Berselli, Mar 03 2011
    
  • Maple
    select(not(isprime) and numtheory:-issqrfree, [$2..1000]); # Robert Israel, Jul 07 2015
  • Mathematica
    lst={};Do[If[SquareFreeQ[n],If[ !PrimeQ[n],AppendTo[lst,n]]],{n,2,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 20 2009; updated by Jean-François Alcover, Jun 19 2013 *)
    Select[Range[200], PrimeNu[#] > 1 && SquareFreeQ[#] &] (* Carlos Eduardo Olivieri, Jul 07 2015 *)
  • PARI
    is(n)=issquarefree(n)&&!isprime(n)&&n>1 \\ Charles R Greathouse IV, Apr 11 2012
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return len(f) > 1 and all(f[p] < 2 for p in f)
    print(list(filter(ok, range(1, 162)))) # Michael S. Branicky, Jun 10 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A120944(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 02 2024

Formula

From Enrique Pérez Herrero, Apr 01 2012: (Start)
Solutions to floor(omega(x)/bigomega(x))*(1-floor(1/bigomega(x))) = 1, where bigomega is A001222 and omega is A001221.
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2s) - 1 - PrimeZeta(s). (End)
a(n) = kn + O(n/log n) where k = Pi^2/6. - Charles R Greathouse IV, Aug 02 2024
Showing 1-10 of 44 results. Next