A000471
a(n) = floor(sinh(n)).
Original entry on oeis.org
0, 1, 3, 10, 27, 74, 201, 548, 1490, 4051, 11013, 29937, 81377, 221206, 601302, 1634508, 4443055, 12077476, 32829984, 89241150, 242582597, 659407867, 1792456423, 4872401723, 13244561064, 36002449668, 97864804714, 266024120300, 723128532145, 1965667148572
Offset: 0
A309105
a(n) = Sum_{k >= 0} floor(n^(2*k) / (2*k)!).
Original entry on oeis.org
1, 1, 3, 9, 25, 71, 198, 543, 1486, 4045, 11007, 29931, 81371, 221197, 601294, 1634497, 4443046, 12077467, 32829975, 89241140, 242582583, 659407855, 1792456409, 4872401706, 13244561047, 36002449653, 97864804698, 266024120284, 723128532126, 1965667148553
Offset: 0
For n = 5:
- we have:
k 5^(2*k)/(2*k)!
-- --------------
0 1
1 12
2 26
3 21
4 9
5 2
6 0
- hence a(5) = 1 + 12 + 26 + 21 + 9 + 2 = 71.
-
a(n) = { my (v=0, d=1); forstep (k=1, oo, 2, if (d<1, return (v), v += floor(d); d *= n^2/(k*(k+1)))) }
A346169
a(n) = floor(cosh(n+1) - cosh(n)).
Original entry on oeis.org
0, 2, 6, 17, 46, 127, 346, 942, 2561, 6961, 18923, 51440, 139829, 380095, 1033206, 2808546, 7634421, 20752508, 56411165, 153341447, 416825269, 1133048555, 3079945300, 8372159341, 22757888603, 61862355045, 168159315586, 457104411844, 1242538616426
Offset: 0
For n = 3, a(3) = 17 because the difference between cosh(4) and cosh(3) is 17.24057..., and floor(17.24057...) = 17.
Showing 1-3 of 3 results.
Comments