cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A235605 Shanks's array c_{a,n} (a >= 1, n >= 0) that generalizes Euler and class numbers, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 1, 8, 57, 61, 2, 16, 352, 2763, 1385, 2, 30, 1280, 38528, 250737, 50521, 1, 46, 3522, 249856, 7869952, 36581523, 2702765, 2, 64, 7970, 1066590, 90767360, 2583554048, 7828053417, 199360981, 2, 96, 15872, 3487246, 604935042, 52975108096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2014

Keywords

Examples

			The array begins:
A000364: 1, 1,    5,     61,       1385,         50521,          2702765,..
A000281: 1, 3,   57,   2763,     250737,      36581523,       7828053417,..
A000436: 1, 8,  352,  38528,    7869952,    2583554048,    1243925143552,..
A000490: 1,16, 1280, 249856,   90767360,   52975108096,   45344872202240,..
A000187: 2,30, 3522,1066590,  604935042,  551609685150,  737740947722562,..
A000192: 2,46, 7970,3487246, 2849229890, 3741386059246, 7205584123783010,..
A064068: 1,64,15872,9493504,10562158592,18878667833344,49488442978598912,..
...
		

Crossrefs

Columns: A000003 (class numbers), A000233, A000362, A000508, ...
Cf. A235606.

Programs

  • Mathematica
    amax = 10; nmax = amax-1; km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[1, n_, km_] := 2(2n)! L[1, 2n+1, km] (2/Pi)^(2n+1) // Round; c[a_ /; a>1, n_, km_] := (2n)! L[a, 2n+1, km] (2a/Pi)^(2n+1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[ c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[ cc[km] != cc[km/2, km = 2km]]; A235605[a_, n_] := cc[km][[a, n+1 ]]; Table[ A235605[ a-n, n], {a, 1, amax}, {n, 0, a-1}] // Flatten (* Jean-François Alcover, Feb 05 2016 *)
    ccs[b_, nm_] := With[{ns = Range[0, nm]}, (-1)^ns If[Mod[b, 4] == 3, Sum[JacobiSymbol[k, b] (b - 4 k)^(2 ns), {k, 1, (b - 1)/2}], Sum[JacobiSymbol[-b, 2 k + 1] (b - (2 k + 1))^(2 ns), {k, 0, (b - 2)/2}]]];
    csfs[1, nm_] := csfs[1, nm] = (2 Range[0, nm])! CoefficientList[Series[Sec[x], {x, 0, 2 nm}], x^2];
    csfs[b_, nm_] := csfs[b, nm] = Fold[Function[{cs, cc}, Append[cs, cc - Sum[cs[[-i]] (-b^2)^i Binomial[2 Length[cs], 2 i], {i, Length[cs]}]]], {}, ccs[b, nm]];
    rowA235605[a_, nm_] := With[{facs = FactorInteger[a], ns = Range[0, nm]}, With[{b = Times @@ (#^Mod[#2, 2] &) @@@ facs}, If[a == b, csfs[b, nm], If[b == 1, 1/2, 1] csfs[b, nm] Sqrt[a/b]^(4 ns + 1) Times @@ Cases[facs, {p_, e_} /; p > 2 && e > 1 :> 1 - JacobiSymbol[-b, p]/p^(2 ns + 1)]]]];
    arr = Table[rowA235605[a, 10], {a, 10}];
    Flatten[Table[arr[[r - n + 1, n + 1]], {r, 0, Length[arr] - 1}, {n, 0, r}]] (* Matthew House, Sep 07 2024 *)

Formula

Shanks gives recurrences.

Extensions

a(27) removed, a(29)-a(42) added, and typo in name corrected by Lars Blomberg, Sep 10 2015
Offset corrected by Andrew Howroyd, Oct 25 2024

A349271 Array A(n, k) that generalizes Euler numbers, class numbers, and tangent numbers, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 8, 11, 5, 2, 4, 16, 46, 57, 16, 1, 6, 30, 128, 352, 361, 61, 2, 8, 46, 272, 1280, 3362, 2763, 272, 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385, 2, 12, 96, 904, 7970, 55744, 249856, 515086, 250737, 7936
Offset: 1

Views

Author

Peter Luschny, Nov 23 2021

Keywords

Examples

			Seen as an array:
[1] 1,  1,   1,    2,     5,      16,       61,        272, ... [A000111]
[2] 1,  1,   3,   11,    57,     361,     2763,      24611, ... [A001586]
[3] 1,  2,   8,   46,   352,    3362,    38528,     515086, ... [A007289]
[4] 1,  4,  16,  128,  1280,   16384,   249856,    4456448, ... [A349264]
[5] 2,  4,  30,  272,  3522,   55744,  1066590,   23750912, ... [A349265]
[6] 2,  6,  46,  522,  7970,  152166,  3487246,   93241002, ... [A001587]
[7] 1,  8,  64,  904, 15872,  355688,  9493504,  296327464, ... [A349266]
[8] 2,  8,  96, 1408, 29184,  739328, 22634496,  806453248, ... [A349267]
[9] 2, 12, 126, 2160, 49410, 1415232, 48649086, 1951153920, ... [A349268]
.
Seen as a triangle:
[1] 1;
[2] 1, 1;
[3] 1, 1,  1;
[4] 1, 2,  3,   2;
[5] 2, 4,  8,  11,    5;
[6] 2, 4, 16,  46,   57,    16;
[7] 1, 6, 30, 128,  352,   361,    61;
[8] 2, 8, 46, 272, 1280,  3362,  2763,   272;
[9] 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385;
		

Crossrefs

A235605 (array generalized Euler secant numbers).
A235606 (array generalized Euler tangent numbers).
A349264 (overview generating functions).
Columns: A000003 (class numbers), A000061, A000233, A000176, A000362, A000488, A000508, A000518.
Cf. A349263 (main diagonal).

A000233 Generalized class numbers c_(n,1).

Original entry on oeis.org

1, 3, 8, 16, 30, 46, 64, 96, 126, 158, 216, 256, 302, 396, 448, 512, 636, 702, 792, 960, 1052, 1118, 1344, 1472, 1550, 1866, 1944, 2048, 2442, 2540, 2688, 3072, 3212, 3388, 3888, 4032, 4094, 4746, 4928, 5056, 5832, 5852, 5976, 6912, 7020, 7180, 8064, 8192
Offset: 1

Views

Author

Keywords

Comments

Let L_a(s) = Sum_{k>=0} (-a|2k+1) /(2k+1)^s be a Dirichlet series, where (-a|2k+1) is the Jacobi symbol. Then the c_(a,n) are defined by L_a(2n+1) = (Pi/(2a))^(2n+1)*sqrt(a)*c_(a,n)/(2n)! for n=0,1,2,..., a=1,2,3,...

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    amax = 50; nmax = 1; km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; c[1, n_, km_] := 2 (2 n)! L[1, 2 n + 1, km] (2/Pi)^(2 n + 1) // Round; c[a_ /; a > 1, n_, km_] := (2 n)! L[a, 2 n + 1, km] (2 a/Pi)^(2 n + 1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[ km = 2 km0]; While[cc[km] != cc[km/2, km = 2 km]]; A000233 = cc[km][[All, 2]] (* Jean-François Alcover, Feb 06 2016 *)
    Table[rowA235605[n, 1][[2]], {n, 50}] (* see A235605 *) (* Matthew House, Oct 05 2024 *)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000
Name clarified by James C. McMahon, Nov 30 2023

A000362 Generalized class numbers c_(n,2).

Original entry on oeis.org

5, 57, 352, 1280, 3522, 7970, 15872, 29184, 49410, 79042, 122400, 180224, 257314, 362340, 492032, 655360, 867588, 1117314, 1420320, 1803264, 2237380, 2745154, 3380736, 4080640, 4881250, 5874150, 6928416, 8126464, 9600870, 11133604
Offset: 1

Views

Author

Keywords

Comments

Let L_a(s) = Sum_{k>=0} (-a|2k+1) /(2k+1)^s be a Dirichlet series, where (-a|2k+1) is the Jacobi symbol. Then the c_(a,n) are defined by L_a(2n+1) = (Pi/(2a))^(2n+1)*sqrt(a)*c_(a,n)/(2n)! for n=0,1,2,..., a=1,2,3,...

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    amax = 30;   km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k+1]/(2k+1)^s, {k, 0, km}]; c[1, n_, km_] := 2(2n)! L[1, 2n+1, km] (2 / Pi)^(2n+1) // Round; c[a_ /; a>1, n_, km_] := (2n)! L[a, 2n+1, km] (2a / Pi)^(2n+1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[km/2, km = 2km]]; A000362[a_] := cc[km][[a, 3]]; Table[A000362[a], {a, 1, amax} ] (* Jean-François Alcover, Feb 08 2016 *)
    Table[rowA235605[n, 2][[3]], {n, 50}] (* see A235605 *) (* Matthew House, Oct 05 2024 *)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000
Showing 1-4 of 4 results.