A349263 Main diagonal of A349271.
1, 1, 8, 128, 3522, 152166, 9493504, 806453248, 89434106370, 12547916380814, 2173051605252096, 455304058354270208, 113519427904851374434
Offset: 1
Crossrefs
Cf. A349271.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(2) = 3: The three snakes of type B_2 are (1,-2), (2,1), (2,-1). a(3) = 11: The 11 snakes of type B_3 are (1,-2,3), (1,-3,2), (1,-3,-2), (2,1,3), (2,-1,3), (2,-3,1), (2,-3,-1), (3,1,2), (3,-1,2), (3,-2,1), (3,-2,-1).
a := proc(n) local k; (-1)^iquo(n,2)*add(2^k*binomial(n,k)*euler(k),k=0..n) end; # Peter Luschny, Jul 08 2009 a := n -> (-1)^(n+iquo(n,2))*2^(3*n+1)*(Zeta(0,-n,1/8) - Zeta(0,-n,5/8)): seq(a(n),n=0..21); # Peter Luschny, Mar 11 2015
n=21; CoefficientList[Series[1/(Cos[x]-Sin[x]), {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *) Table[Abs[Numerator[EulerE[n,1/4]]],{n,0,35}] (* Harvey P. Dale, May 18 2011 *)
{a(n) = if(n<0, 0, n! * polcoeff( 1 / (cos(x + x * O(x^n)) - sin(x + x * O(x^n))), n))}; /* Michael Somos, Feb 03 2004 */
{a(n) = my(an); if(n<2, n>=0, an = vector(n+1, m, 1); for(m=2, n, an[m+1] = 2*an[m] + an[m-1] + sum(k=0, m-3, binomial(m-2, k) * (an[k+1] * an[m-1-k] + 2*an[k+2] * an[m-k] - an[k+3] * an[m-1-k]))); an[n+1])}; /* Michael Somos, Feb 03 2004 */
/* Explicit formula by Peter Bala: */ {a(n)=((1+I)/2)^n*sum(k=0,n,((1-I)/(1+I))^k*sum(j=0,k,(-1)^(k-j)*binomial(n+1,k-j)*(2*j+1)^n))}
@CachedFunction def p(n,x) : if n == 0 : return 1 w = -1 if n%2 == 0 else 0 v = 1 if n%2 == 0 else -1 return v*add(p(k,0)*binomial(n,k)*(x^(n-k)+w) for k in range(n)[::2]) def A001586(n) : return abs(2^n*p(n, 1/2)) [A001586(n) for n in (0..21)] # Peter Luschny, Jul 19 2012
Exponential generating functions of generalized Euler numbers in context: egf1 = sec(1*x)*(sin(x) + 1). [A000111, A000364, A000182] egf2 = sec(2*x)*(sin(x) + cos(x)). [A001586, A000281, A000464] egf3 = sec(3*x)*(sin(2*x) + cos(x)). [A007289, A000436, A000191] egf4 = sec(4*x)*(sin(4*x) + 1). [A349264, A000490, A000318] egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)). [A349265, A000187, A000320] egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)). [A001587, A000192, A000411] egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)). [A349266, A064068, A064072] egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)). [A349267, A064069, A064073] egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2. [A349268, A064070, A064074]
sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021
A007289 := proc(n) local k,j; add(add((-1)^j*binomial(k,j)*(k-2*j)^n*I^(n-k),j=0..k),k=0..n) end: # Peter Luschny, Jul 31 2011
mx = 17; Range[0, mx]! CoefficientList[ Series[ (Sin[2 x] + Cos[x])/Cos[3 x], {x, 0, mx}], x] (* Robert G. Wilson v, Apr 28 2013 *)
my(x='x+O('x^66)); Vec(serlaplace((sin(2*x) + cos(x)) / cos(3*x))) \\ Joerg Arndt, Apr 28 2013
from mpmath import mp, polylog, im mp.dps = 32; mp.pretty = True def aperm3(n): return 2*((1-I)/(1+I))^n*(1+add(binomial(n,j)*polylog(-j,I)*3^j for j in (0..n))) def A007289(n) : return im(aperm3(n)) [int(A007289(n)) for n in (0..17)] # Peter Luschny, Apr 28 2013
m = 18; CoefficientList[Series[Sec[5*x] * (Sin[x] + Sin[3*x] + Cos[2*x] + Cos[4*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(x) + sin(3*x) + cos(2*x) + cos(4*x))/cos(5*x)))} \\ Andrew Howroyd, Nov 20 2021
t = PowerSeriesRing(QQ, 't', default_prec=19).gen() f = (sin(t) + sin(3*t) + cos(2*t) + cos(4*t)) / cos(5*t) f.egf_to_ogf().list()
sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..17);
m = 17; CoefficientList[Series[Sec[7*x] * (-Sin[2*x] + Sin[4*x] + Sin[6*x] + Cos[x] + Cos[3*x] - Cos[5*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 21 2021 *)
sec(8*x)*2*(sin(4*x) + cos(4*x)): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..17);
m = 17; CoefficientList[Series[2 * Sec[8*x] * (Sin[4*x] + Cos[4*x]), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 21 2021 *)
sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2: series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..17);
m = 17; CoefficientList[Series[Sec[9*x] * (4 * Sin[3*x] + 2) * Cos[3*x]^2, {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 21 2021 *)
Comments