cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A349264 Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)).

Original entry on oeis.org

1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408
Offset: 0

Views

Author

Peter Luschny, Nov 20 2021

Keywords

Examples

			Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
   [A000111, A000364, A000182]
egf2 = sec(2*x)*(sin(x) + cos(x)).
   [A001586, A000281, A000464]
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
   [A007289, A000436, A000191]
egf4 = sec(4*x)*(sin(4*x) + 1).
   [A349264, A000490, A000318]
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
   [A349265, A000187, A000320]
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
   [A001587, A000192, A000411]
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
   [A349266, A064068, A064072]
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
   [A349267, A064069, A064073]
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
   [A349268, A064070, A064074]
		

Crossrefs

Programs

  • Maple
    sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
  • Mathematica
    m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
  • PARI
    seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021

A000187 Generalized Euler numbers, c(5,n).

Original entry on oeis.org

2, 30, 3522, 1066590, 604935042, 551609685150, 737740947722562, 1360427147514751710, 3308161927353377294082, 10256718523496425979562270, 39490468691102039103925777602, 184856411587530526077816051412830, 1033888847501229495999134528615701122
Offset: 0

Views

Author

Keywords

Examples

			a(3) = 1066590: L_5(7) = Sum_{n >= 0} (-1)^n*( 1/(10*n+1)^7 + 1/(10*n+3)^7 + 1/(10*n+7)^7 + 1/(10*n+9)^7 ) = 1066590*( (1/6!)*sqrt(5)*(Pi/10)^7 ). - _Peter Bala_, Nov 18 2020
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq((-1)^n*(10)^(2*n)*(euler(2*n,1/10) + euler(2*n,3/10)), n = 0..11); # Peter Bala, Nov 18 2020
    egf := sec(5*x)*(cos(2*x) + cos(4*x)): ser := series(egf, x, 26):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
  • Mathematica
    a0=5; nmax=20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[ -a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2n+1)*Pi^(-2n-1)*(2n)!*a^(2n+1/2)*L[a, 2n+1, km] // Round; cc[km_] := cc[km] = Table[ c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[ km/2, km = 2km]]; A000187 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)

Formula

From the Shanks paper: Consider the Dirichlet series L_a(s) = sum_{k>=0} (-a|2k+1) / (2k+1)^s, where (-a|2k+1) is the Jacobi symbol. Then the numbers c_(a,n) are defined by L_a(2n+1)= (Pi/(2a))^(2n+1)*sqrt(a)* c(a,n)/ (2n)! for a > 1 and n = 0,1,2,... - Sean A. Irvine, Mar 26 2012
From Peter Bala, Nov 18 2020: (Start)
a(n) = (-1)^n*10^(2*n)*( E(2*n,1/10) + E(2*n,3/10) ), where E(n,x) are the Euler polynomials - see A060096.
Row 5 of A235605.
G.f.: A(x) = 2*cos(x)*cos(3*x)/( 2*cos(x)*cos(4*x) - cos(3*x) ) = 2 + 30*x^2/2! + 3522*x^4/4! + ....
Alternative forms:
A(x) = (exp(i*x) + exp(3*i*x) + exp(7*i*x) + exp(9*i*x))/(1 + exp(10*i*x));
A(x) = (sqrt(5)/10)*( sec(x + Pi/5) + sec(x + 2*Pi/5) - sec(x + 3*Pi/5) - sec(x + 4*Pi/5) ). (End)
a(n) = (2*n)!*[x^(2*n)](sec(5*x)*(cos(2*x) + cos(4*x))). - Peter Luschny, Nov 21 2021
a(n) ~ 2^(4*n + 2) * 5^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000

A349271 Array A(n, k) that generalizes Euler numbers, class numbers, and tangent numbers, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 8, 11, 5, 2, 4, 16, 46, 57, 16, 1, 6, 30, 128, 352, 361, 61, 2, 8, 46, 272, 1280, 3362, 2763, 272, 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385, 2, 12, 96, 904, 7970, 55744, 249856, 515086, 250737, 7936
Offset: 1

Views

Author

Peter Luschny, Nov 23 2021

Keywords

Examples

			Seen as an array:
[1] 1,  1,   1,    2,     5,      16,       61,        272, ... [A000111]
[2] 1,  1,   3,   11,    57,     361,     2763,      24611, ... [A001586]
[3] 1,  2,   8,   46,   352,    3362,    38528,     515086, ... [A007289]
[4] 1,  4,  16,  128,  1280,   16384,   249856,    4456448, ... [A349264]
[5] 2,  4,  30,  272,  3522,   55744,  1066590,   23750912, ... [A349265]
[6] 2,  6,  46,  522,  7970,  152166,  3487246,   93241002, ... [A001587]
[7] 1,  8,  64,  904, 15872,  355688,  9493504,  296327464, ... [A349266]
[8] 2,  8,  96, 1408, 29184,  739328, 22634496,  806453248, ... [A349267]
[9] 2, 12, 126, 2160, 49410, 1415232, 48649086, 1951153920, ... [A349268]
.
Seen as a triangle:
[1] 1;
[2] 1, 1;
[3] 1, 1,  1;
[4] 1, 2,  3,   2;
[5] 2, 4,  8,  11,    5;
[6] 2, 4, 16,  46,   57,    16;
[7] 1, 6, 30, 128,  352,   361,    61;
[8] 2, 8, 46, 272, 1280,  3362,  2763,   272;
[9] 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385;
		

Crossrefs

A235605 (array generalized Euler secant numbers).
A235606 (array generalized Euler tangent numbers).
A349264 (overview generating functions).
Columns: A000003 (class numbers), A000061, A000233, A000176, A000362, A000488, A000508, A000518.
Cf. A349263 (main diagonal).

A000320 Generalized tangent numbers d(5,n).

Original entry on oeis.org

4, 272, 55744, 23750912, 17328937984, 19313964388352, 30527905292468224, 64955605537174126592, 179013508069217017790464, 620314831396713435870789632, 2639743384489464189324523208704, 13533573366345611477262311433961472, 82274260343572247169162187576069586944
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(5*x)*(sin(x) + sin(3*x)): ser := series(egf, x, 26):
    seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..13); # Peter Luschny, Nov 21 2021
  • Mathematica
    nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2k+1)^s, {k, 0, km}]; d[a_ /; a>1, n_, km_] := (2n-1)! L[-a, 2n, km] (2a/Pi)^(2n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[5, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000320 = dd[km] (* Jean-François Alcover, Feb 07 2016 *)

Formula

a(n) = (2*n-1)!*[x^(2*n-1)](sec(5*x)*(sin(x) + sin(3*x))). - Peter Luschny, Nov 21 2021

Extensions

Formula producing A000326, rather than this sequence, deleted by Sean A. Irvine, Sep 09 2010
a(10)-a(13) from Lars Blomberg, Sep 07 2015
Showing 1-4 of 4 results.