cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A005449 Second pentagonal numbers: a(n) = n*(3*n + 1)/2.

Original entry on oeis.org

0, 2, 7, 15, 26, 40, 57, 77, 100, 126, 155, 187, 222, 260, 301, 345, 392, 442, 495, 551, 610, 672, 737, 805, 876, 950, 1027, 1107, 1190, 1276, 1365, 1457, 1552, 1650, 1751, 1855, 1962, 2072, 2185, 2301, 2420, 2542, 2667, 2795, 2926, 3060, 3197, 3337, 3480
Offset: 0

Views

Author

Keywords

Comments

Number of edges in the join of the complete graph and the cycle graph, both of order n, K_n * C_n. - Roberto E. Martinez II, Jan 07 2002
Also number of cards to build an n-tier house of cards. - Martin Wohlgemuth, Aug 11 2002
The modular form Delta(q) = q*Product_{n>=1} (1-q^n)^24 = q*(1 + Sum_{n>=1} (-1)^n*(q^(n*(3*n-1)/2)+q^(n*(3*n+1)/2)))^24 = q*(1 + Sum_{n>=1} A033999(n)*(q^A000326(n)+q^a(n)))^24. - Jonathan Vos Post, Mar 15 2006
Row sums of triangle A134403.
Bisection of A001318. - Omar E. Pol, Aug 22 2011
Sequence found by reading the line from 0 in the direction 0, 7, ... and the line from 2 in the direction 2, 15, ... in the square spiral whose vertices are the generalized pentagonal numbers, A001318. - Omar E. Pol, Sep 08 2011
A general formula for the n-th second k-gonal number is given by T(n, k) = n*((k-2)*n+k-4)/2, n>=0, k>=5. - Omar E. Pol, Aug 04 2012
Partial sums give A006002. - Denis Borris, Jan 07 2013
A002260 is the following array A read by antidiagonals:
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
0, 1, 2, 3, 4, 5, ...
and a(n) is the hook sum: Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). - R. J. Mathar, Jun 30 2013
From Klaus Purath, May 13 2021: (Start)
This sequence and A000326 provide all integers m such that 24*m + 1 is a square. The union of the two sequences is A001318.
If A is a sequence satisfying the recurrence t(n) = 3*t(n-1) - 2*t(n-2) with the initial values either A(0) = 1, A(1) = n + 2 or A(0) = -1, A(1) = n - 1, then a(n) = (A(i)^2 - A(i-1)*A(i+1))/2^i + n^2 for i>0. (End)
a(n+1) is the number of Dyck paths of size (3,3n+2), i.e., the number of NE lattice paths from (0,0) to (3,3n+2) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
Binomial transform of [0, 2, 3, 0, 0, 0, ...], being a(n) = 2*binomial(n,1) + 3*binomial(n,2). a(3) = 15 = [0, 2, 3, 0] dot [1, 3, 3, 1] = [0 + 6 + 9 + 0]. - Gary W. Adamson, Dec 17 2022
a(n) is the sum of longest side length of all nondegenerate integer-sided triangles with shortest side length n and middle side length (n + 1), n > 0. - Torlach Rush, Feb 04 2024

Examples

			From _Omar E. Pol_, Aug 22 2011: (Start)
Illustration of initial terms:
                                               O
                                             O O
                                 O         O O O
                               O O       O O O O
                     O       O O O     O O O O O
                   O O     O O O O     O O O O O
           O     O O O     O O O O     O O O O O
         O O     O O O     O O O O     O O O O O
    O    O O     O O O     O O O O     O O O O O
    O    O O     O O O     O O O O     O O O O O
    -    ---     -----     -------     ---------
    2     7        15         26           40
(End)
		

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, vol. 138 of Graduate Texts in Mathematics, Springer-Verlag, 2000.

Crossrefs

Cf. A016789 (first differences), A006002 (partial sums).
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, this sequence, A045943, A115067, A140090, A140091, A059845, A140672-A140675, A151542.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=3).
Cf. numbers of the form n*((2*k+1)*n+1)/2 listed in A022289 (this sequence is the case k=1).

Programs

Formula

a(n) = A110449(n, 1) for n>0.
G.f.: x*(2+x)/(1-x)^3. E.g.f.: exp(x)*(2*x + 3*x^2/2). a(n) = n*(3*n + 1)/2. a(-n) = A000326(n). - Michael Somos, Jul 18 2003
a(n) = A001844(n) - A000217(n+1) = A101164(n+2,2) for n>0. - Reinhard Zumkeller, Dec 03 2004
a(n) = Sum_{j=1..n} n+j. - Zerinvary Lajos, Sep 12 2006
a(n) = A126890(n,n). - Reinhard Zumkeller, Dec 30 2006
a(n) = 2*C(3*n,4)/C(3*n,2), n>=1. - Zerinvary Lajos, Jan 02 2007
a(n) = A000217(n) + A000290(n). - Zak Seidov, Apr 06 2008
a(n) = a(n-1) + 3*n - 1 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = A129267(n+5,n). - Philippe Deléham, Dec 21 2011
a(n) = 2*A000217(n) + A000217(n-1). - Philippe Deléham, Mar 25 2013
a(n) = A130518(3*n+1). - Philippe Deléham, Mar 26 2013
a(n) = (12/(n+2)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+2). - Vladimir Kruchinin, Jun 04 2013
a(n) = floor(n/(1-exp(-2/(3*n)))) for n>0. - Richard R. Forberg, Jun 22 2013
a(n) = Sum_{i=1..n} (3*i - 1) for n >= 1. - Wesley Ivan Hurt, Oct 11 2013 [Corrected by Rémi Guillaume, Oct 24 2024]
a(n) = (A000292(6*n+k+1)-A000292(k))/(6*n+1) - A000217(3*n+k+1), for any k >= 0. - Manfred Arens, Apr 26 2015
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 3*log(3) = 0.89036376976145307522... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(2*n) - A000217(n). - Bruno Berselli, Sep 21 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 4*log(2) - 6. - Amiram Eldar, Jan 18 2021
From Klaus Purath, May 13 2021: (Start)
Partial sums of A016789 for n > 0.
a(n) = 3*n^2 - A000326(n).
a(n) = A000326(n) + n.
a(n) = A002378(n) + A000217(n-1) for n >= 1. [Corrected by Rémi Guillaume, Aug 14 2024] (End)
From Klaus Purath, Jul 14 2021: (Start)
b^2 = 24*a(n) + 1 we get by b^2 = (a(n+1) - a(n-1))^2 = (a(2*n)/n)^2.
a(2*n) = n*(a(n+1) - a(n-1)), n > 0.
a(2*n+1) = n*(a(n+1) - a(n)). (End)
A generalization of Lajos' formula, dated Sep 12 2006, follows. Let SP(k,n) = the n-th second k-gonal number. Then SP(2k+1,n) = Sum_{j=1..n} (k-1)*n+j+k-2. - Charlie Marion, Jul 13 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2) * binomial(3*n+k, 2*k). - Peter Bala, Nov 03 2024
For integer m, (6*m + 1)^2*a(n) + a(m) = a((6*m+1)*n + m). - Peter Bala, Jan 09 2025

A349264 Generalized Euler numbers, a(n) = n!*[x^n](sec(4*x)*(sin(4*x) + 1)).

Original entry on oeis.org

1, 4, 16, 128, 1280, 16384, 249856, 4456448, 90767360, 2080374784, 52975108096, 1483911200768, 45344872202240, 1501108249821184, 53515555843342336, 2044143848640217088, 83285910482761809920, 3605459138582973251584, 165262072909347030040576, 7995891855149741436305408
Offset: 0

Views

Author

Peter Luschny, Nov 20 2021

Keywords

Examples

			Exponential generating functions of generalized Euler numbers in context:
egf1 = sec(1*x)*(sin(x) + 1).
   [A000111, A000364, A000182]
egf2 = sec(2*x)*(sin(x) + cos(x)).
   [A001586, A000281, A000464]
egf3 = sec(3*x)*(sin(2*x) + cos(x)).
   [A007289, A000436, A000191]
egf4 = sec(4*x)*(sin(4*x) + 1).
   [A349264, A000490, A000318]
egf5 = sec(5*x)*(sin(x) + sin(3*x) + cos(2*x) + cos(4*x)).
   [A349265, A000187, A000320]
egf6 = sec(6*x)*(sin(x) + sin(5*x) + cos(x) + cos(5*x)).
   [A001587, A000192, A000411]
egf7 = sec(7*x)*(-sin(2*x) + sin(4*x) + sin(6*x) + cos(x) + cos(3*x) - cos(5*x)).
   [A349266, A064068, A064072]
egf8 = sec(8*x)*2*(sin(4*x) + cos(4*x)).
   [A349267, A064069, A064073]
egf9 = sec(9*x)*(4*sin(3*x) + 2)*cos(3*x)^2.
   [A349268, A064070, A064074]
		

Crossrefs

Programs

  • Maple
    sec(4*x)*(sin(4*x) + 1): series(%, x, 20): seq(n!*coeff(%, x, n), n = 0..19);
  • Mathematica
    m = 19; CoefficientList[Series[Sec[4*x] * (Sin[4*x] + 1), {x, 0, m}], x] * Range[0, m]! (* Amiram Eldar, Nov 20 2021 *)
  • PARI
    seq(n)={my(x='x + O('x^(n+1))); Vec(serlaplace((sin(4*x) + 1)/cos(4*x)))} \\ Andrew Howroyd, Nov 20 2021

A000187 Generalized Euler numbers, c(5,n).

Original entry on oeis.org

2, 30, 3522, 1066590, 604935042, 551609685150, 737740947722562, 1360427147514751710, 3308161927353377294082, 10256718523496425979562270, 39490468691102039103925777602, 184856411587530526077816051412830, 1033888847501229495999134528615701122
Offset: 0

Views

Author

Keywords

Examples

			a(3) = 1066590: L_5(7) = Sum_{n >= 0} (-1)^n*( 1/(10*n+1)^7 + 1/(10*n+3)^7 + 1/(10*n+7)^7 + 1/(10*n+9)^7 ) = 1066590*( (1/6!)*sqrt(5)*(Pi/10)^7 ). - _Peter Bala_, Nov 18 2020
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq((-1)^n*(10)^(2*n)*(euler(2*n,1/10) + euler(2*n,3/10)), n = 0..11); # Peter Bala, Nov 18 2020
    egf := sec(5*x)*(cos(2*x) + cos(4*x)): ser := series(egf, x, 26):
    seq((2*n)!*coeff(ser, x, 2*n), n = 0..11); # Peter Luschny, Nov 21 2021
  • Mathematica
    a0=5; nmax=20; km0 = nmax; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[ -a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[a_, n_, km_] := 2^(2n+1)*Pi^(-2n-1)*(2n)!*a^(2n+1/2)*L[a, 2n+1, km] // Round; cc[km_] := cc[km] = Table[ c[a0, n, km], {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[ km/2, km = 2km]]; A000187 = cc[km] (* Jean-François Alcover, Feb 05 2016 *)

Formula

From the Shanks paper: Consider the Dirichlet series L_a(s) = sum_{k>=0} (-a|2k+1) / (2k+1)^s, where (-a|2k+1) is the Jacobi symbol. Then the numbers c_(a,n) are defined by L_a(2n+1)= (Pi/(2a))^(2n+1)*sqrt(a)* c(a,n)/ (2n)! for a > 1 and n = 0,1,2,... - Sean A. Irvine, Mar 26 2012
From Peter Bala, Nov 18 2020: (Start)
a(n) = (-1)^n*10^(2*n)*( E(2*n,1/10) + E(2*n,3/10) ), where E(n,x) are the Euler polynomials - see A060096.
Row 5 of A235605.
G.f.: A(x) = 2*cos(x)*cos(3*x)/( 2*cos(x)*cos(4*x) - cos(3*x) ) = 2 + 30*x^2/2! + 3522*x^4/4! + ....
Alternative forms:
A(x) = (exp(i*x) + exp(3*i*x) + exp(7*i*x) + exp(9*i*x))/(1 + exp(10*i*x));
A(x) = (sqrt(5)/10)*( sec(x + Pi/5) + sec(x + 2*Pi/5) - sec(x + 3*Pi/5) - sec(x + 4*Pi/5) ). (End)
a(n) = (2*n)!*[x^(2*n)](sec(5*x)*(cos(2*x) + cos(4*x))). - Peter Luschny, Nov 21 2021
a(n) ~ 2^(4*n + 2) * 5^(2*n + 1/2) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Apr 15 2022

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000

A000411 Generalized tangent numbers d(6,n).

Original entry on oeis.org

6, 522, 152166, 93241002, 97949265606, 157201459863882, 357802951084619046, 1096291279711115037162, 4350684698032741048452486, 21709332137467778453687752842, 133032729004732721625426681085926, 982136301747914281420205946546842922, 8597768767880274820173388403096814519366
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    egf := sec(6*x)*(sin(x) + sin(5*x)): ser := series(egf, x, 24):
    seq((2*n-1)!*coeff(ser, x, 2*n-1), n = 1..12); # Peter Luschny, Nov 21 2021
  • Mathematica
    nmax = 15; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; d[a_ /; a > 1, n_, km_] := (2 n - 1)! L[-a, 2 n, km] (2 a/Pi)^(2 n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[6, n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2 km0]; While[dd[km] != dd[km/2, km = 2 km]]; A000411 = dd[km] (* Jean-François Alcover, Feb 08 2016 *)
  • Sage
    t = PowerSeriesRing(QQ, 't', default_prec=24).gen()
    f = 2 * sin(3 * t) / (2 * cos(4 * t) - 1)
    f.egf_to_ogf().list()[1::2] # F. Chapoton, Oct 06 2020

Formula

a(n) = (2*n-1)! * [x^(2*n-1)] 2*sin(3*x) / (2*cos(4*x) - 1). - F. Chapoton, Oct 06 2020
a(n) = (2*n-1)!*[x^(2*n-1)](sec(6*x)*(sin(x) + sin(5*x))). - Peter Luschny, Nov 21 2021

Extensions

a(10)-a(12) from Lars Blomberg, Sep 07 2015

A235606 Shanks's array d_{a,n} (a >= 1, n >= 1) that generalizes the tangent numbers, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 2, 2, 11, 16, 4, 46, 361, 272, 4, 128, 3362, 24611, 7936, 6, 272, 16384, 515086, 2873041, 353792, 8, 522, 55744, 4456448, 135274562, 512343611, 22368256, 8, 904, 152166, 23750912, 2080374784, 54276473326, 129570724921, 1903757312, 12, 1408, 355688
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2014

Keywords

Examples

			The array begins:
A000182: 1,  2,    16,      272,        7936,         353792, ...
A000464: 1, 11,   361,    24611,     2873041,      512343611, ...
A000191: 2, 46,  3362,   515086,   135274562,    54276473326, ...
A000318: 4,128, 16384,  4456448,  2080374784,  1483911200768, ...
A000320: 4,272, 55744, 23750912, 17328937984, 19313964388352, ...
A000411: 6,522,152166, 93241002, 97949265606,157201459863882, ...
A064072: 8,904,355688,296327464,423645846728,925434038426824, ...
...
		

References

  • D. Shanks. "Generalized Euler and Class Numbers." Math. Comput. 21, 689-694, 1967. Math. Comput. 22, 699, 1968.

Crossrefs

Rows: A000182 (tangent numbers), A000464, A000191, A000318, A000320, A000411, A064072-A064075, ...
Columns: A000061, A000176, A000488, A000518, ...
Cf. A235605.

Programs

  • Mathematica
    amax = nmax = 10; km0 = 10; Clear[dd]; L[a_, s_, km_] := Sum[JacobiSymbol[ -a, 2k+1]/(2k+1)^s, {k, 0, km}]; d[1, n_, km_] := 2(2n-1)! L[-1, 2n, km] (2/Pi)^(2n) // Round; d[a_ /; a>1, n_, km_] := (2n-1)! L[-a, 2n, km] (2a/ Pi)^(2n)/Sqrt[a] // Round; dd[km_] := dd[km] = Table[d[a, n, km], {a, 1, amax}, {n, 1, nmax}]; dd[km0]; dd[km = 2km0]; While[dd[km] != dd[km/2, km = 2km]]; A235606 = dd[km]; Table[A235606[[ a-n+1, n]], {a, 1, amax}, {n, 1, a}] // Flatten (* Jean-François Alcover, Feb 05 2016 *)
    dds[b_, nm_] := With[{ns = Range[nm]}, (-1)^(ns - 1) If[Mod[b, 4] == 1, Sum[JacobiSymbol[k, b] (b - 4 k)^(2 ns - 1), {k, 1, (b - 1)/2}], Sum[JacobiSymbol[b, 2 k + 1] (b - (2 k + 1))^(2 ns - 1), {k, 0, (b - 2)/2}]]];
    dsfs[1, nm_] := dsfs[1, nm] = (2 Range[nm] - 1)! CoefficientList[Series[Tan[x], {x, 0, 2 nm - 1}]/x, x^2];
    dsfs[b_, nm_] := dsfs[b, nm] = Fold[Function[{ds, dd}, Append[ds, dd - Sum[ds[[-i]] (-b^2)^i Binomial[2 Length[ds] + 1, 2 i], {i, Length[ds]}]]], {}, dds[b, nm]];
    rowA235606[a_, nm_] := With[{facs = FactorInteger[a], ns = Range[nm]}, With[{b = Times @@ (#^Mod[#2, 2] &) @@@ facs}, If[a == b, dsfs[b, nm], If[b == 1, 1/2, 1] dsfs[b, nm] Sqrt[a/b]^(4 ns - 1) Times @@ Cases[facs, {p_, e_} /; p > 2 && e > 1 :> 1 - JacobiSymbol[b, p]/p^(2 ns)]]]];
    arr = Table[rowA235606[a, 10], {a, 10}];
    Flatten[Table[arr[[r - n + 1, n]], {r, Length[arr]}, {n, r}]] (* Matthew House, Oct 30 2024 *)

Formula

Shanks gives recurrences.

Extensions

More terms from Lars Blomberg, Sep 07 2015

A262144 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} d(n,i+1)*x^i/i ) for n >= 1, where d(n,k) is Shanks's array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 2, 1, 11, 10, 1, 46, 241, 108, 1, 128, 2739, 10411, 2214, 1, 272, 16384, 265244, 836321, 75708, 1, 522, 64964, 2883584, 45094565, 112567243, 3895236, 1, 904, 212325, 18852096, 822083584, 12975204810, 22949214033
Offset: 1

Views

Author

Peter Bala, Sep 18 2015

Keywords

Comments

Shanks's array d(n,k) n >= 1, k >= 1, is A235606.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 1, 2, ... and for each n >= 1, the expansion of exp( Sum_{i >= 1} d(n,i + r)*x^i/i ) has integer coefficients. This is the case r = 1.
For the similarly defined array associated with Shanks' c(n,k) array see A262143.

Examples

			The triangular array begins
1
1   2
1  11     10
1  46    241      108
1 128   2739    10411      2214
1 272  16384   265244    836321       75708
1 522  64964  2883584  45094565   112567243     3895236
1 904 212325 18852096 822083584 12975204810 22949214033 ...
The square array begins (row indexing n starts at 1)
1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, ...
1, 11, 241, 10411, 836321, 112567243, 22949214033, 6571897714923, 2507281057330113, ...
1, 46, 2739, 265244, 45094565, 12975204810, 5772785327575, 3656385436507960, 3107332328608143945, ...
1, 128, 16384, 2883584, 822083584, 395136991232, 300338473074688, 330739694704787456, 493338658405976375296, ...
1, 272, 64864, 18852096, 8133183744, 5766226378752, 6562478680375296, 11019751545852395520, 25333348417380699340800, ...
1, 522, 212325, 94501768, 57064909374, 54459242196516, 84430282319806062, 197625548666434041000, 642556291067409622713543, ...
1, 904, 586452, 382674008, 311514279098, 379982635729752, 753288329161251844, 2308779464340711480136, 10003494921382094286802995, ...
		

Crossrefs

Cf. A000182 (d(1,n)), A000464 (d(2,n)), A000191 (d(3,n)), A000318 (d(4,n)), A000320 (d(5,n)), A000411 (d(6,n)), A064072 (d(7,n)), A235605, A235606, A262143, A262145 (row 1 of square array).
Showing 1-6 of 6 results.