cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000464 Expansion of e.g.f. sin(x)/cos(2*x).

Original entry on oeis.org

1, 11, 361, 24611, 2873041, 512343611, 129570724921, 44110959165011, 19450718635716001, 10784052561125704811, 7342627959965776406281, 6023130568334172003579011, 5858598896811701995459355761, 6667317162352419006959182803611, 8776621742176931117228228227924441
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Dec 22 2021: (Start)
Conjectures:
1) Taking the sequence (a(n))n>=1 modulo an integer k gives a purely periodic sequence with period dividing phi(k). For example, the sequence taken modulo 21 begins [11, 4, 20, 10, 17, 1, 11, 4, 20, 10, 17, 1, 11, 4, 20, 10, 17, 1, ...] with an apparent period of length 6, which divides phi(21) = 12.
2) For i >= 0, define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k. If true, then for each i the expansion of exp(Sum_{n >= 1} a_i(n)*x^n/n) has integer coefficients.
3) a(m*n) == a(m)^n (mod 2^k) for k = 2*v_2(m) + 4, where v_p(i) denotes the p-adic valuation of i.
4)(i) a(2*m*n) == a(n)^(2*m) (mod 2^k) for k = v_2(m) + 4
(ii) a((2*m+1)*n) == a(n)^(2*m+1) (mod 2^k) for k = v_2(m) + 4. (End)

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag.
  • J. W. L. Glaisher, "On the coefficients in the expansions of cos x/ cos 2x and sin x/ cos 2x", Quart. J. Pure and Applied Math., 45 (1914), 187-222.
  • I. J. Schwatt, Intro. to Operations with Series, Chelsea, p. 278.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row 2 of A235606.
Cf. A064073. Bisection of A000822, A001586.

Programs

  • Maple
    a := n -> (-1)^n*2^(6*n+4)*(Zeta(0, -2*n-1, 5/8)-Zeta(0, -2*n-1, 7/8)):
    seq(a(n), n=0..12); # Peter Luschny, Oct 15 2015
  • Mathematica
    With[{nn=30},Take[CoefficientList[Series[Sin[x]/Cos[2x],{x,0,nn}],x] Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Mar 23 2012 *)
    nmax = 15; km0 = 10; d[n_, km_] := Round[(2^(4n-1/2) (2n-1)! Sum[ JacobiSymbol[2, 2k+1]/(2k+1)^(2n), {k, 0, km}])/Pi^(2n)]; dd[km_] := dd[km] = Table[d[n, km], {n, 1, nmax}]; dd[km0]; dd[km = 2*km0]; While[dd[km] != dd[km/2, km = 2*km]]; A000464 = dd[km] (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    a(n)=if(n<0, 0, n+=n+1; n!*polcoeff(sin(x+x*O(x^n))/cos(2*x+x*O(x^n)),n)) /* Michael Somos, Feb 09 2006 */

Formula

E.g.f.: Sum_{k>=0} a(k)x^(2k+1)/(2k+1)! = sin(x)/cos(2x).
a(n) = (-1)^n*L(X,-2n+1) where L(X,z) is the Dirichlet L-function L(X,z) = Sum_{k>=0} X(k)/k^z and where X(k) is the Dirichlet character Legendre(k,2) which begins 1,0,-1,0,-1,0,1,0,1,0,-1,0,-1,0,1,0,1,0,-1,0.... - Benoit Cloitre, Mar 22 2009 [This Dirichlet character is A091337. - Jianing Song, Oct 22 2023]
From Peter Bala, Mar 24 2009: (Start)
Basic hypergeometric generating function:
2*exp(-t)*Sum_{n = 0..inf} (Product_{k = 1..n} (1-exp(-16*k*t))/Product_{k = 1..n+1} (1+exp(-(16*k-8)*t))) = 1 + 11*t + 361*t^2/2! + 24611*t^3/3! + .... For other sequences with generating functions of a similar type see A000364, A002105, A002439, A079144 and A158690.
a(n) = (-1)^(n+1)*L(-2*n-1), where L(s) is the Dirichlet L-function L(s) = 1 - 1/3^s - 1/5^s + 1/7^s + - - + ... [Andrews et al., Theorem 5]. (End)
From Peter Bala, Jun 18 2009: (Start)
a(n) = (-1)^n*B_(2*n+2)(X)/(2*n+2), where B_n(X) denotes the X-Bernoulli number with X a Dirichlet character modulus 8 given by X(8*n+1) = X(8*n+7) = 1, X(8*n+3) = X(8*n+5) = -1 and X(2*n) = 0. See A161722 for the values of B_n(X).
For the theory and properties of the generalized Bernoulli numbers B_n(X) and the associated generalized Bernoulli polynomials B_n(X,x) see [Cohen, Section 9.4].
The present sequence also occurs in the evaluation of the finite sum of powers Sum_{i = 0..m-1} {(8*i+1)^n - (8*i+3)^n - (8*i+5)^n + (8*i+7)^n}, n = 1,2,... - see A151751 for details. (End)
G.f. 1/G(0) where G(k) = 1 + x - x*(4*k+3)*(4*k+4)/(1 - (4*k+4)*(4*k+5)*x/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Aug 11 2012
G.f.: 1/E(0) where E(k) = 1 - 11*x - 32*x*k*(k+1) - 16*x^2*(k+1)^2*(4*k+3)*(4*k+5)/E(k+1) (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
a(n) ~ (2*n+1)! * 2^(4*n+7/2) / Pi^(2*n+2). - Vaclav Kotesovec, May 03 2014
a(n) = (-1)^n*2^(6*n+4)*(Zeta(-2*n-1,5/8)-Zeta(-2*n-1,7/8)). - Peter Luschny, Oct 15 2015
From Peter Bala, May 11 2017: (Start)
G.f. A(x) = 1 + 11*x + 361*x^2 + ... = 1/(1 + x - 12*x/(1 - 20*x/(1 + x - 56*x/(1 - 72*x/(1 + x - ... - 4*n*(4*n - 1)*x/(1 - 4*n*(4*n + 1)*x/((1 + x) - ...))))))).
A(x) = 1/(1 + 9*x - 20*x/(1 - 12*x/(1 + 9*x - 72*x/(1 - 56*x/(1 + 9*x - ... - 4*n*(4*n + 1)*x/(1 - 4*n*(4*n - 1)*x/(1 + 9*x - ...))))))).
It follows that the first binomial transform of A(x) and the ninth binomial transform of A(x) have continued fractions of Stieltjes-type (S-fractions). (End)
a(n) = (-1)^(n+1)*4^(2*n+1)*E(2*n+1,1/4), where E(n,x) is the n-th Euler polynomial. Cf. A002439. - Peter Bala, Aug 13 2017
From Peter Bala, Dec 04 2021: (Start)
F(x) = exp(x)*(exp(2*x) - 1)/(exp(4*x) + 1) = x - 11*x^3/3! + 361x^5/5! - 24611*x^7/7! + ... is the e.g.f. for the sequence [1, 0, -11, 0, 361, 0, -24611, 0, ...], a signed and aerated version of this sequence.
The binomial transform exp(x)*F(x) = x + 2*x^2/2! - 8*x^3/3! - 40*x^4/4! + + - - is an e.g.f. for a signed version of A000828 (omitting the initial term). (End)
From Peter Bala, Dec 22 2021: (Start)
a(1) = 1, a(n) = (-1)^(n-1) - Sum_{k = 1..n} (-4)^k*C(2*n-1,2*k)*a(n-k).
a(n) == 1 (mod 10); a(5*n+1) == 0 mod(11);
a(n) == - 23^(n+1) (mod 108); a(n) == (7^2)*59^n (mod 144);
a(n) == 11^n (mod 240); a(n) == (11^2)*131^n (mod 360). (End)

Extensions

Better description, new reference, Aug 15 1995

A235605 Shanks's array c_{a,n} (a >= 1, n >= 0) that generalizes Euler and class numbers, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 1, 8, 57, 61, 2, 16, 352, 2763, 1385, 2, 30, 1280, 38528, 250737, 50521, 1, 46, 3522, 249856, 7869952, 36581523, 2702765, 2, 64, 7970, 1066590, 90767360, 2583554048, 7828053417, 199360981, 2, 96, 15872, 3487246, 604935042, 52975108096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2014

Keywords

Examples

			The array begins:
A000364: 1, 1,    5,     61,       1385,         50521,          2702765,..
A000281: 1, 3,   57,   2763,     250737,      36581523,       7828053417,..
A000436: 1, 8,  352,  38528,    7869952,    2583554048,    1243925143552,..
A000490: 1,16, 1280, 249856,   90767360,   52975108096,   45344872202240,..
A000187: 2,30, 3522,1066590,  604935042,  551609685150,  737740947722562,..
A000192: 2,46, 7970,3487246, 2849229890, 3741386059246, 7205584123783010,..
A064068: 1,64,15872,9493504,10562158592,18878667833344,49488442978598912,..
...
		

Crossrefs

Columns: A000003 (class numbers), A000233, A000362, A000508, ...
Cf. A235606.

Programs

  • Mathematica
    amax = 10; nmax = amax-1; km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[1, n_, km_] := 2(2n)! L[1, 2n+1, km] (2/Pi)^(2n+1) // Round; c[a_ /; a>1, n_, km_] := (2n)! L[a, 2n+1, km] (2a/Pi)^(2n+1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[ c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[ cc[km] != cc[km/2, km = 2km]]; A235605[a_, n_] := cc[km][[a, n+1 ]]; Table[ A235605[ a-n, n], {a, 1, amax}, {n, 0, a-1}] // Flatten (* Jean-François Alcover, Feb 05 2016 *)
    ccs[b_, nm_] := With[{ns = Range[0, nm]}, (-1)^ns If[Mod[b, 4] == 3, Sum[JacobiSymbol[k, b] (b - 4 k)^(2 ns), {k, 1, (b - 1)/2}], Sum[JacobiSymbol[-b, 2 k + 1] (b - (2 k + 1))^(2 ns), {k, 0, (b - 2)/2}]]];
    csfs[1, nm_] := csfs[1, nm] = (2 Range[0, nm])! CoefficientList[Series[Sec[x], {x, 0, 2 nm}], x^2];
    csfs[b_, nm_] := csfs[b, nm] = Fold[Function[{cs, cc}, Append[cs, cc - Sum[cs[[-i]] (-b^2)^i Binomial[2 Length[cs], 2 i], {i, Length[cs]}]]], {}, ccs[b, nm]];
    rowA235605[a_, nm_] := With[{facs = FactorInteger[a], ns = Range[0, nm]}, With[{b = Times @@ (#^Mod[#2, 2] &) @@@ facs}, If[a == b, csfs[b, nm], If[b == 1, 1/2, 1] csfs[b, nm] Sqrt[a/b]^(4 ns + 1) Times @@ Cases[facs, {p_, e_} /; p > 2 && e > 1 :> 1 - JacobiSymbol[-b, p]/p^(2 ns + 1)]]]];
    arr = Table[rowA235605[a, 10], {a, 10}];
    Flatten[Table[arr[[r - n + 1, n + 1]], {r, 0, Length[arr] - 1}, {n, 0, r}]] (* Matthew House, Sep 07 2024 *)

Formula

Shanks gives recurrences.

Extensions

a(27) removed, a(29)-a(42) added, and typo in name corrected by Lars Blomberg, Sep 10 2015
Offset corrected by Andrew Howroyd, Oct 25 2024

A000191 Generalized tangent numbers d(3, n).

Original entry on oeis.org

2, 46, 3362, 515086, 135274562, 54276473326, 30884386347362, 23657073914466766, 23471059057478981762, 29279357851856595135406, 44855282210826271011257762, 82787899853638102222862479246, 181184428895772987376073015175362, 463938847087789978515380344866258286
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000436, A007289, overview in A349264.

Programs

  • Maple
    gf := (2*sin(t))/(2*cos(2*t) - 1): ser := series(gf, t, 26):
    seq((2*n+1)!*coeff(ser, t, 2*n+1), n=0..23); # Peter Luschny, Oct 17 2020
    a := n -> (-1)^n*(-6)^(2*n+1)*euler(2*n+1, 1/6):
    seq(a(n), n = 0..13); # Peter Luschny, Nov 26 2020
  • Mathematica
    (* Formulas from D. Shanks, see link, p. 690. *)
    L[ a_, s_, t_:10000 ] := Plus@@Table[ N[ JacobiSymbol[ -a, 2k+1 ](2k+1)^(-s), 30 ], {k, 0, t} ]; d[ a_, n_, t_:10000 ] := (2n-1)!/Sqrt[ a ](2a/Pi)^(2n)L[ -a, 2n, t ] (* Eric W. Weisstein, Aug 30 2001 *)

Formula

a(n) = 2*A002439(n). - N. J. A. Sloane, Nov 06 2009
E.g.f.: (2*sin(t))/(2*cos(2*t) - 1), odd terms only. - Peter Luschny, Oct 17 2020
Alternative form for e.g.f.: a(n) = (2*n+1)!*[x^(2*n)](sqrt(3)/(6*x))*(sec(x + Pi/3) + sec(x + 2*Pi/3)). - Peter Bala, Nov 16 2020
a(n) = (-1)^(n+1)*6^(2*n+1)*euler(2*n+1, 1/6). - Peter Luschny, Nov 26 2020

Extensions

More terms from Eric W. Weisstein, Aug 30 2001
Offset set to 0 by Peter Luschny, Nov 26 2020

A349271 Array A(n, k) that generalizes Euler numbers, class numbers, and tangent numbers, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 8, 11, 5, 2, 4, 16, 46, 57, 16, 1, 6, 30, 128, 352, 361, 61, 2, 8, 46, 272, 1280, 3362, 2763, 272, 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385, 2, 12, 96, 904, 7970, 55744, 249856, 515086, 250737, 7936
Offset: 1

Views

Author

Peter Luschny, Nov 23 2021

Keywords

Examples

			Seen as an array:
[1] 1,  1,   1,    2,     5,      16,       61,        272, ... [A000111]
[2] 1,  1,   3,   11,    57,     361,     2763,      24611, ... [A001586]
[3] 1,  2,   8,   46,   352,    3362,    38528,     515086, ... [A007289]
[4] 1,  4,  16,  128,  1280,   16384,   249856,    4456448, ... [A349264]
[5] 2,  4,  30,  272,  3522,   55744,  1066590,   23750912, ... [A349265]
[6] 2,  6,  46,  522,  7970,  152166,  3487246,   93241002, ... [A001587]
[7] 1,  8,  64,  904, 15872,  355688,  9493504,  296327464, ... [A349266]
[8] 2,  8,  96, 1408, 29184,  739328, 22634496,  806453248, ... [A349267]
[9] 2, 12, 126, 2160, 49410, 1415232, 48649086, 1951153920, ... [A349268]
.
Seen as a triangle:
[1] 1;
[2] 1, 1;
[3] 1, 1,  1;
[4] 1, 2,  3,   2;
[5] 2, 4,  8,  11,    5;
[6] 2, 4, 16,  46,   57,    16;
[7] 1, 6, 30, 128,  352,   361,    61;
[8] 2, 8, 46, 272, 1280,  3362,  2763,   272;
[9] 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385;
		

Crossrefs

A235605 (array generalized Euler secant numbers).
A235606 (array generalized Euler tangent numbers).
A349264 (overview generating functions).
Columns: A000003 (class numbers), A000061, A000233, A000176, A000362, A000488, A000508, A000518.
Cf. A349263 (main diagonal).

A000061 Generalized tangent numbers d(n,1).

Original entry on oeis.org

1, 1, 2, 4, 4, 6, 8, 8, 12, 14, 14, 16, 20, 20, 24, 32, 24, 30, 38, 32, 40, 46, 40, 48, 60, 50, 54, 64, 60, 68, 80, 64, 72, 92, 76, 96, 100, 82, 104, 112, 96, 108, 126, 112, 120, 148, 112, 128, 168, 130, 156, 160, 140, 162, 184, 160, 168, 198, 170, 192, 220, 168, 192
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 1 of A235606.
Cf. A000176.

Programs

Formula

From Sean A. Irvine, Mar 26 2012, corrected by Peter J. Taylor, Sep 26 2017: (Start)
Consider the Dirichlet series L_a(s) = sum_{k>=0} (-a|2k+1) / (2k+1)^s, where (-a|2k+1) is the Jacobi symbol. Then the numbers d(a,n) are defined by L_-a(2n)= (pi/(2a))^(2n)*sqrt(a)* d(a,n)/ (2n-1)! for a>1 and n=1,2,3...; or by L_-a(2n)= (1/2)*(pi/(2a))^(2n)*sqrt(a)* d(a,n)/ (2n-1)! for a=1 and n=1,2,3,...
From the Shanks paper, these can be computed as:
d(1,n)=A000182(n)
d(m^2,n)=(1/2) * m^(2n-1) * (m*prod_(p_i|m)(p_i^(-1)))^(2*n) * prod_(p_i|m)(p_i^(2*n)-1) * d(1,n)
Otherwise write a=bm^2, b squarefree, then d(a,n)=m^(2n-1) * (m*prod_(p_i|m)(p_i^(-1)))^(2*n) * prod_(p_i|m)(p_i^(2*n)-jacobi(b,p_i)) * d(b,n) with d(b,n), b squarefree determined by equating the recurrence
D(b,n)=sum(d(b,n-i)*(-b^2)^i*C(2n-1,2i),i=0..n-1)with the case-wise expression
D(b,n)=(-1)^(n-1) * sum(jacobi(k,b)*(b-4k)^(2n-1), k=1..(b-1)/2) if b == 1(mod 4)
D(b,n)=(-1)^(n-1) * sum(jacobi(b,2k+1)*(b-(2k+1))^(2n-1),2k+1
Sequence gives a(n)=d(n,1). (End)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 03 2000
It would be nice to have a more precise definition! - N. J. A. Sloane, May 26 2007

A262144 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} d(n,i+1)*x^i/i ) for n >= 1, where d(n,k) is Shanks's array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 2, 1, 11, 10, 1, 46, 241, 108, 1, 128, 2739, 10411, 2214, 1, 272, 16384, 265244, 836321, 75708, 1, 522, 64964, 2883584, 45094565, 112567243, 3895236, 1, 904, 212325, 18852096, 822083584, 12975204810, 22949214033
Offset: 1

Author

Peter Bala, Sep 18 2015

Keywords

Comments

Shanks's array d(n,k) n >= 1, k >= 1, is A235606.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 1, 2, ... and for each n >= 1, the expansion of exp( Sum_{i >= 1} d(n,i + r)*x^i/i ) has integer coefficients. This is the case r = 1.
For the similarly defined array associated with Shanks' c(n,k) array see A262143.

Examples

			The triangular array begins
1
1   2
1  11     10
1  46    241      108
1 128   2739    10411      2214
1 272  16384   265244    836321       75708
1 522  64964  2883584  45094565   112567243     3895236
1 904 212325 18852096 822083584 12975204810 22949214033 ...
The square array begins (row indexing n starts at 1)
1, 2, 10, 108, 2214, 75708, 3895236, 280356120, 26824493574, ...
1, 11, 241, 10411, 836321, 112567243, 22949214033, 6571897714923, 2507281057330113, ...
1, 46, 2739, 265244, 45094565, 12975204810, 5772785327575, 3656385436507960, 3107332328608143945, ...
1, 128, 16384, 2883584, 822083584, 395136991232, 300338473074688, 330739694704787456, 493338658405976375296, ...
1, 272, 64864, 18852096, 8133183744, 5766226378752, 6562478680375296, 11019751545852395520, 25333348417380699340800, ...
1, 522, 212325, 94501768, 57064909374, 54459242196516, 84430282319806062, 197625548666434041000, 642556291067409622713543, ...
1, 904, 586452, 382674008, 311514279098, 379982635729752, 753288329161251844, 2308779464340711480136, 10003494921382094286802995, ...
		

Crossrefs

Cf. A000182 (d(1,n)), A000464 (d(2,n)), A000191 (d(3,n)), A000318 (d(4,n)), A000320 (d(5,n)), A000411 (d(6,n)), A064072 (d(7,n)), A235605, A235606, A262143, A262145 (row 1 of square array).

A262143 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} c(n,i)*x^i/i ) for n >= 1, where c(n,k) is Shanks' array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 8, 33, 23, 1, 16, 208, 1011, 371, 1, 30, 768, 14336, 65985, 10515, 1, 46, 2211, 94208, 2091520, 7536099, 461869, 1, 64, 5043, 412860, 24313856, 535261184, 1329205857, 28969177, 1, 96, 9984, 1361948, 164276421, 11025776640, 211966861312, 334169853267, 2454072147
Offset: 1

Author

Peter Bala, Sep 13 2015

Keywords

Comments

Shanks' array c(n,k) n >= 1, k >= 0, is A235605.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 0,1,2,... and for each n >= 1, the expansion of exp( Sum_{i >= 1} c(n,i + r)*x^i/i ) has integer coefficients. The case n = 1 was conjectured by Hanna in A255895.
For the similarly defined array associated with Shanks' d(n,k) array see A262144.

Examples

			The square array begins (row indexing n starts at 1)
1  1    3      23        371         10515           461869 ..
1  3   33    1011      65985       7536099       1329205857 ..
1  8  208   14336    2091520     535261184     211966861312 ..
1 16  768   94208   24313856   11025776640    7748875976704 ..
1 30 2211  412860  164276421  115699670490  126686112278631 ..
1 46 5043 1361948  778121381  787337024970 1239870854518999 ..
1 64 9984 3716096 2891509760 3978693525504 8522989918683136 ..
...
Array as a triangle
1
1  1
1  3    3
1  8   33      23
1 16  208    1011      371
1 30  768   14336    65985        10515
1 46 2211   94208  2091520      7536099       461869
1 64 5043  412860  24313856   535261184   1329205857 28969177
1 96 9984 1361948 164276421 11025776640 211966861312 ...
...
		

Crossrefs

Cf. A000233 (column 1), A000364 (c(1,n)), A000281 (c(2,n)), A000436 (c(3,n)), A000490 (c(4,n)), A000187 (c(5,n)), A000192 (c(6,n)), A064068 (c(7,n)), A235605, A235606, A255881, A255895, A262144, A262145.
Showing 1-7 of 7 results.