cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A235605 Shanks's array c_{a,n} (a >= 1, n >= 0) that generalizes Euler and class numbers, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 1, 8, 57, 61, 2, 16, 352, 2763, 1385, 2, 30, 1280, 38528, 250737, 50521, 1, 46, 3522, 249856, 7869952, 36581523, 2702765, 2, 64, 7970, 1066590, 90767360, 2583554048, 7828053417, 199360981, 2, 96, 15872, 3487246, 604935042, 52975108096
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2014

Keywords

Examples

			The array begins:
A000364: 1, 1,    5,     61,       1385,         50521,          2702765,..
A000281: 1, 3,   57,   2763,     250737,      36581523,       7828053417,..
A000436: 1, 8,  352,  38528,    7869952,    2583554048,    1243925143552,..
A000490: 1,16, 1280, 249856,   90767360,   52975108096,   45344872202240,..
A000187: 2,30, 3522,1066590,  604935042,  551609685150,  737740947722562,..
A000192: 2,46, 7970,3487246, 2849229890, 3741386059246, 7205584123783010,..
A064068: 1,64,15872,9493504,10562158592,18878667833344,49488442978598912,..
...
		

Crossrefs

Columns: A000003 (class numbers), A000233, A000362, A000508, ...
Cf. A235606.

Programs

  • Mathematica
    amax = 10; nmax = amax-1; km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[-a, 2k+1]/(2k+1)^s, {k, 0, km}]; c[1, n_, km_] := 2(2n)! L[1, 2n+1, km] (2/Pi)^(2n+1) // Round; c[a_ /; a>1, n_, km_] := (2n)! L[a, 2n+1, km] (2a/Pi)^(2n+1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[ c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[ cc[km] != cc[km/2, km = 2km]]; A235605[a_, n_] := cc[km][[a, n+1 ]]; Table[ A235605[ a-n, n], {a, 1, amax}, {n, 0, a-1}] // Flatten (* Jean-François Alcover, Feb 05 2016 *)
    ccs[b_, nm_] := With[{ns = Range[0, nm]}, (-1)^ns If[Mod[b, 4] == 3, Sum[JacobiSymbol[k, b] (b - 4 k)^(2 ns), {k, 1, (b - 1)/2}], Sum[JacobiSymbol[-b, 2 k + 1] (b - (2 k + 1))^(2 ns), {k, 0, (b - 2)/2}]]];
    csfs[1, nm_] := csfs[1, nm] = (2 Range[0, nm])! CoefficientList[Series[Sec[x], {x, 0, 2 nm}], x^2];
    csfs[b_, nm_] := csfs[b, nm] = Fold[Function[{cs, cc}, Append[cs, cc - Sum[cs[[-i]] (-b^2)^i Binomial[2 Length[cs], 2 i], {i, Length[cs]}]]], {}, ccs[b, nm]];
    rowA235605[a_, nm_] := With[{facs = FactorInteger[a], ns = Range[0, nm]}, With[{b = Times @@ (#^Mod[#2, 2] &) @@@ facs}, If[a == b, csfs[b, nm], If[b == 1, 1/2, 1] csfs[b, nm] Sqrt[a/b]^(4 ns + 1) Times @@ Cases[facs, {p_, e_} /; p > 2 && e > 1 :> 1 - JacobiSymbol[-b, p]/p^(2 ns + 1)]]]];
    arr = Table[rowA235605[a, 10], {a, 10}];
    Flatten[Table[arr[[r - n + 1, n + 1]], {r, 0, Length[arr] - 1}, {n, 0, r}]] (* Matthew House, Sep 07 2024 *)

Formula

Shanks gives recurrences.

Extensions

a(27) removed, a(29)-a(42) added, and typo in name corrected by Lars Blomberg, Sep 10 2015
Offset corrected by Andrew Howroyd, Oct 25 2024

A349271 Array A(n, k) that generalizes Euler numbers, class numbers, and tangent numbers, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 2, 4, 8, 11, 5, 2, 4, 16, 46, 57, 16, 1, 6, 30, 128, 352, 361, 61, 2, 8, 46, 272, 1280, 3362, 2763, 272, 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385, 2, 12, 96, 904, 7970, 55744, 249856, 515086, 250737, 7936
Offset: 1

Views

Author

Peter Luschny, Nov 23 2021

Keywords

Examples

			Seen as an array:
[1] 1,  1,   1,    2,     5,      16,       61,        272, ... [A000111]
[2] 1,  1,   3,   11,    57,     361,     2763,      24611, ... [A001586]
[3] 1,  2,   8,   46,   352,    3362,    38528,     515086, ... [A007289]
[4] 1,  4,  16,  128,  1280,   16384,   249856,    4456448, ... [A349264]
[5] 2,  4,  30,  272,  3522,   55744,  1066590,   23750912, ... [A349265]
[6] 2,  6,  46,  522,  7970,  152166,  3487246,   93241002, ... [A001587]
[7] 1,  8,  64,  904, 15872,  355688,  9493504,  296327464, ... [A349266]
[8] 2,  8,  96, 1408, 29184,  739328, 22634496,  806453248, ... [A349267]
[9] 2, 12, 126, 2160, 49410, 1415232, 48649086, 1951153920, ... [A349268]
.
Seen as a triangle:
[1] 1;
[2] 1, 1;
[3] 1, 1,  1;
[4] 1, 2,  3,   2;
[5] 2, 4,  8,  11,    5;
[6] 2, 4, 16,  46,   57,    16;
[7] 1, 6, 30, 128,  352,   361,    61;
[8] 2, 8, 46, 272, 1280,  3362,  2763,   272;
[9] 2, 8, 64, 522, 3522, 16384, 38528, 24611, 1385;
		

Crossrefs

A235605 (array generalized Euler secant numbers).
A235606 (array generalized Euler tangent numbers).
A349264 (overview generating functions).
Columns: A000003 (class numbers), A000061, A000233, A000176, A000362, A000488, A000508, A000518.
Cf. A349263 (main diagonal).

A000362 Generalized class numbers c_(n,2).

Original entry on oeis.org

5, 57, 352, 1280, 3522, 7970, 15872, 29184, 49410, 79042, 122400, 180224, 257314, 362340, 492032, 655360, 867588, 1117314, 1420320, 1803264, 2237380, 2745154, 3380736, 4080640, 4881250, 5874150, 6928416, 8126464, 9600870, 11133604
Offset: 1

Views

Author

Keywords

Comments

Let L_a(s) = Sum_{k>=0} (-a|2k+1) /(2k+1)^s be a Dirichlet series, where (-a|2k+1) is the Jacobi symbol. Then the c_(a,n) are defined by L_a(2n+1) = (Pi/(2a))^(2n+1)*sqrt(a)*c_(a,n)/(2n)! for n=0,1,2,..., a=1,2,3,...

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    amax = 30;   km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[JacobiSymbol[-a, 2 k+1]/(2k+1)^s, {k, 0, km}]; c[1, n_, km_] := 2(2n)! L[1, 2n+1, km] (2 / Pi)^(2n+1) // Round; c[a_ /; a>1, n_, km_] := (2n)! L[a, 2n+1, km] (2a / Pi)^(2n+1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[c[a, n, km], {a, 1, amax}, {n, 0, nmax}]; cc[km0]; cc[km = 2km0]; While[cc[km] != cc[km/2, km = 2km]]; A000362[a_] := cc[km][[a, 3]]; Table[A000362[a], {a, 1, amax} ] (* Jean-François Alcover, Feb 08 2016 *)
    Table[rowA235605[n, 2][[3]], {n, 50}] (* see A235605 *) (* Matthew House, Oct 05 2024 *)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000

A000508 Generalized class numbers c_(n,3).

Original entry on oeis.org

61, 2763, 38528, 249856, 1066590, 3487246, 9493504, 22634496, 48649086, 96448478, 179369856, 315621376, 530788622, 860061996, 1346126848, 2046820352, 3038120316, 4403100222, 6254596992, 8737505280, 11992903772
Offset: 1

Views

Author

Keywords

Comments

Let L_a(s) = Sum_{k>=0} (-a|2k+1) /(2k+1)^s be a Dirichlet series, where (-a|2k+1) is the Jacobi symbol. Then the c_(a,n) are defined by L_a(2n+1) = (Pi/(2a))^(2n+1)*sqrt(a)*c_(a,n)/(2n)! for n=0,1,2,..., a=1,2,3,...

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A235605.

Programs

  • Mathematica
    amax = 25; km0 = 10; Clear[cc]; L[a_, s_, km_] := Sum[ JacobiSymbol[ -a, 2 k + 1]/(2 k + 1)^s, {k, 0, km}]; c[1, n_, km_] := 2 (2 n)! L[1, 2 n + 1, km] (2/Pi)^(2 n + 1) // Round; c[a_ /; a > 1, n_, km_] := (2 n)! L[a, 2 n + 1, km] (2 a/Pi)^(2 n + 1)/Sqrt[a] // Round; cc[km_] := cc[km] = Table[ c[a, 3, km], {a, 1, amax} ]; cc[km0]; cc[km = 2 km0]; While[cc[km] != cc[km/2, km = 2 km]]; A000508 = cc[km] (* Jean-François Alcover, Feb 09 2016 *)
    Table[rowA235605[n, 3][[4]], {n, 50}] (* see A235605 *) (* Matthew House, Oct 05 2024 *)

Extensions

More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 02 2000
Name clarified by James C. McMahon, Nov 30 2023

A262143 Square array read by antidiagonals upwards: the n-th row o.g.f. is exp( Sum_{i >= 1} c(n,i)*x^i/i ) for n >= 1, where c(n,k) is Shanks' array of generalized Euler and class numbers.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 8, 33, 23, 1, 16, 208, 1011, 371, 1, 30, 768, 14336, 65985, 10515, 1, 46, 2211, 94208, 2091520, 7536099, 461869, 1, 64, 5043, 412860, 24313856, 535261184, 1329205857, 28969177, 1, 96, 9984, 1361948, 164276421, 11025776640, 211966861312, 334169853267, 2454072147
Offset: 1

Views

Author

Peter Bala, Sep 13 2015

Keywords

Comments

Shanks' array c(n,k) n >= 1, k >= 0, is A235605.
We conjecture that the entries of the present array are all integers. More generally, we conjecture that for r = 0,1,2,... and for each n >= 1, the expansion of exp( Sum_{i >= 1} c(n,i + r)*x^i/i ) has integer coefficients. The case n = 1 was conjectured by Hanna in A255895.
For the similarly defined array associated with Shanks' d(n,k) array see A262144.

Examples

			The square array begins (row indexing n starts at 1)
1  1    3      23        371         10515           461869 ..
1  3   33    1011      65985       7536099       1329205857 ..
1  8  208   14336    2091520     535261184     211966861312 ..
1 16  768   94208   24313856   11025776640    7748875976704 ..
1 30 2211  412860  164276421  115699670490  126686112278631 ..
1 46 5043 1361948  778121381  787337024970 1239870854518999 ..
1 64 9984 3716096 2891509760 3978693525504 8522989918683136 ..
...
Array as a triangle
1
1  1
1  3    3
1  8   33      23
1 16  208    1011      371
1 30  768   14336    65985        10515
1 46 2211   94208  2091520      7536099       461869
1 64 5043  412860  24313856   535261184   1329205857 28969177
1 96 9984 1361948 164276421 11025776640 211966861312 ...
...
		

Crossrefs

Cf. A000233 (column 1), A000364 (c(1,n)), A000281 (c(2,n)), A000436 (c(3,n)), A000490 (c(4,n)), A000187 (c(5,n)), A000192 (c(6,n)), A064068 (c(7,n)), A235605, A235606, A255881, A255895, A262144, A262145.
Showing 1-5 of 5 results.