cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000561 Number of discordant permutations.

Original entry on oeis.org

6, 44, 145, 336, 644, 1096, 1719, 2540, 3586, 4884, 6461, 8344, 10560, 13136, 16099, 19476, 23294, 27580, 32361, 37664, 43516, 49944, 56975, 64636, 72954, 81956, 91669, 102120, 113336, 125344, 138171, 151844, 166390, 181836, 198209, 215536, 233844, 253160, 273511, 294924, 317426, 341044
Offset: 3

Views

Author

Keywords

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [(9/2)*n^3-(45/2)*n^2+29*n: n in [3..45]]; // Vincenzo Librandi, Feb 10 2016
    
  • Maple
    f := n->9/2*n^3-45/2*n^2+29*n; seq(f(n), n=0..50); # Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
    A000561:=-(-6-20*z-5*z**2+4*z**3)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {6, 44, 145, 336}, 50] (* Jean-François Alcover, Feb 10 2016 *)
    Drop[CoefficientList[Series[x^3(6+20x+5x^2-4x^3)/(1-x)^4,{x,0,50}],x],3] (* Harvey P. Dale, Jul 20 2021 *)
  • PARI
    for(n=3, 45, print1(n*(9*n^2 - 45*n + 58)/2, ", ")) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [n*(9*n^2 - 45*n + 58)/2 for n in (3..45)] # G. C. Greubel, Nov 23 2018

Formula

G.f.: x^3*(6 + 20*x + 5*x^2 - 4*x^3) / (1 - x)^4. - Jeffrey Shallit [adapted by Vincenzo Librandi, Feb 10 2016]
a(n) = n*(9*n^2 - 45*n + 58)/2. - Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001
E.g.f.: x*(-22 - 4*x + (22 - 18*x + 9*x^2)*exp(x))/2. - G. C. Greubel, Nov 23 2018

Extensions

More terms from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Feb 17 2001