A000588 a(n) = 7*binomial(2n,n-3)/(n+4).
0, 0, 0, 1, 7, 35, 154, 637, 2548, 9996, 38760, 149226, 572033, 2187185, 8351070, 31865925, 121580760, 463991880, 1771605360, 6768687870, 25880277150, 99035193894, 379300783092, 1453986335186, 5578559816632, 21422369201800, 82336410323440, 316729578421620
Offset: 0
Examples
G.f. = x^3 + 7*x^4 + 35*x^5 + 154*x^6 + 637*x^7 + 2548*x^8 + 9996*x^9 + ...
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Joerg Arndt, The a(5)=35 Young tableaux of shape [8,2].
- Dennis E. Davenport, Louis W. Shapiro, Lara K. Pudwell and Leon C. Woodson, The Boundary of Ordered Trees, J. Integer Seq., Vol. 18 (2015), Article 15.5.8; alternative link.
- Hilmar Haukur Gudmundsson, Dyck paths, standard Young tableaux, and pattern avoiding permutations, PU. M. A., Vol. 21, No. 2 (2010), pp. 265-284 (see 4.4 p. 279).
- Richard K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., Vol. 14, No. 5 (1976), pp. 395-405.
- Athanasios Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math., Vol. 14 (1957), pp. 405-414. [Annotated scan of selected pages]
- Athanasios Papoulis, A new method of inversion of the Laplace transform, Quart. Applied Math., Vol. 14 (1956), pp. 405-414.
- John Riordan, Letter to N. J. A. Sloane, Nov 10 1970.
- John Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., Vol. 29, No. 129 (1975), pp. 215-222.
- Zoran Sunic, Self-Describing Sequences and the Catalan Family Tree, Electronic Journal of Combinatorics, Vol. 10 (2003), Article N5.
Crossrefs
Programs
-
Mathematica
a[n_] := 7*Binomial[2n, n-3]/(n + 4); Table[a[n],{n,0,27}] (* James C. McMahon, Dec 05 2023 *)
-
PARI
A000588(n)=7*binomial(2*n,n-3)/(n+4) \\ M. F. Hasler, Aug 25 2012
-
PARI
my(x='x+O('x^50)); concat([0, 0, 0], Vec(x^3*((1-(1-4*x)^(1/2))/(2*x))^7)) \\ Altug Alkan, Nov 01 2015
Formula
Expansion of x^3*C^7, where C = (1-(1-4*x)^(1/2))/(2*x) is the g.f. for the Catalan numbers, A000108. - Philippe Deléham, Feb 03 2004
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=6, a(n-3)=(-1)^(n-6)*coeff(charpoly(A,x),x^6). - Milan Janjic, Jul 08 2010
a(n) = A214292(2*n-1,n-4) for n > 3. - Reinhard Zumkeller, Jul 12 2012
From Ilya Gutkovskiy, Jan 22 2017: (Start)
E.g.f.: (1/6)*x^3*1F1(7/2; 8; 4*x).
a(n) ~ 7*4^n/(sqrt(Pi)*n^(3/2)). (End)
0 = a(n)*(+1456*a(n+1) - 87310*a(n+2) + 132834*a(n+3) - 68068*a(n+4) + 9724*a(n+5)) + a(n+1)*(+8918*a(n+1) - 39623*a(n+2) + 51726*a(n+3) - 299*a(n+4) - 1573*a(n+5)) + a(n+2)*(-24696*a(n+2) - 1512*a(n+3) + 1008*a(n+4)) for all n in Z. - Michael Somos, Jan 22 2017
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=3} 1/a(n) = 27/14 - 26*Pi/(63*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 11364*log(phi)/(175*sqrt(5)) - 4583/350, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^(n)*W(x)dx, n>=0, where W(x) = sqrt(4/x - 1)*(x^3 - 5*x^2 + 6*x - 1)/(2*Pi). The function W(x) for x->0 tends to -infinity (which is its absolute minimum), and W(4) = 0. W(x) is a signed function on the interval x = (0, 4) where it has two maxima separated by one local minimum. - Karol A. Penson, Jun 17 2024
D-finite with recurrence -(n+4)*(n-3)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 30 2024
Extensions
More terms from N. J. A. Sloane, Jul 13 2010
Comments