A000722
Number of invertible Boolean functions of n variables: a(n) = (2^n)!.
Original entry on oeis.org
1, 2, 24, 40320, 20922789888000, 263130836933693530167218012160000000, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Delbert L. Johnson, Table of n, a(n) for n = 0..8
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
- Index entries for sequences related to Boolean functions
-
a[n_] := Factorial[2^n]; Table[a[n],{n,0,6}] (* James C. McMahon, Dec 06 2023 *)
-
atonfact(a,n) = {sr=0; for(x=1,n, y =(a^x)!; sr+=1.0/y; print1(y" "); ); print(); print(sr) }
A000654
Invertible Boolean functions of n variables.
Original entry on oeis.org
1, 2, 52, 142090700, 17844701940501123640681816160, 59757436204078657410908164193971330396709572693816353610758085074676243846093824
Offset: 1
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Adam P. Goucher, Table of n, a(n) for n = 1..7
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
- M. A. Harrison, The number of equivalence classes of Boolean functions under groups containing negation, IEEE Trans. Electron. Comput. 12 (1963), 559-561. [Annotated scanned copy]
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- Qing-bin Luo, Jin-zhao Wu, and Chen Lin, Computing the Number of the Equivalence Classes for Reversible Logic Functions, Int'l J. of Theor. Phys. (2020) Vol. 59, 2384-2396.
- Ludovic Schwob, On the enumeration of double cosets and self-inverse double cosets, arXiv:2506.04007 [math.CO], 2025. See p. 10.
- Index entries for sequences related to Boolean functions
-
cyclify =
Function[{x},
Sort@Tally[Length /@ PermutationCycles[x + 1, Identity]]];
totalweight =
Function[{c}, Product[(x[[1]]^x[[2]]) ( x[[2]]!), {x, c}]];
perms = Function[{n},
Flatten[Table[
FromDigits[Permute[IntegerDigits[BitXor[x, a], 2, n], sigma],
2], {sigma, Permutations[Range[n]]}, {a, 0, 2^n - 1}, {x, 0,
2^n - 1}], 1]];
countit =
Function[{n},
Sum[totalweight[x[[1]]] (x[[2]]^2), {x,
Tally[cyclify /@ perms[n]]}]/((2^n) (n!))^2];
Table[countit[n], {n, 1, 5}] (* Adam P. Goucher, Feb 12 2021 *)
A000652
Invertible Boolean functions of n variables.
Original entry on oeis.org
1, 1, 6, 924, 81738720000, 256963707943061374889193111552000, 30978254928194376001814792318154658399138184007229852126545533479881553257431040000000
Offset: 0
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 154, problem 12.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- Index entries for sequences related to Boolean functions
A000723
Invertible Boolean functions of n variables.
Original entry on oeis.org
1, 3, 840, 54486432000, 68523655451482690147713024000000, 2753622660283944533494648206058191857701074569760095316814277221684346880000000000000
Offset: 1
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A001038
Invertible Boolean functions with GL(n,2) acting on the domain and range.
Original entry on oeis.org
2, 2, 10, 52246, 2631645209645100680144, 312242081385925594286511113384607360432260178128338777217975928751832
Offset: 1
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- Qing-bin Luo, Jin-zhao Wu, Chen Lin, Computing the Number of the Equivalence Classes for Reversible Logic Functions, Int'l J. of Theor. Phys. (2020) Vol. 59, 2384-2396.
- Index entries for sequences related to Boolean functions
A000724
Invertible Boolean functions of n variables.
Original entry on oeis.org
1, 3, 196, 3406687200, 2141364232858913975435172249600, 43025354066936633335853878219659247776604712057098163541301459387254457761792000000
Offset: 1
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[((2^n)! + (2^n - 1) (2^(n - 1))! 2^(2^(n - 1)) * (n! * Sum[ (2^(n - 2 k) - 1)/((n - 2 k)!*k!), {k, 0, Floor[(n - 1)/2]}]))/(n! 2^(2 n)), {n, 6}] (* Michael De Vlieger, Aug 20 2017 *)
A000725
Invertible Boolean functions of n variables.
Original entry on oeis.org
1, 2, 154, 2270394624, 571030462095782973206774552784, 3824475917061034074298122508414160251634847335755905881951011420229530501911521280
Offset: 1
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Showing 1-7 of 7 results.
Comments