cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000674 Boustrophedon transform of 1, 2, 2, 2, 2, ...

Original entry on oeis.org

1, 3, 7, 16, 43, 138, 527, 2346, 11943, 68418, 435547, 3050026, 23300443, 192835698, 1718682167, 16412205306, 167173350543, 1809239622978, 20732358910387, 250773962554186, 3192953259262243, 42686640718266258, 597853508941160207
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 3*x + 7*x^2 + 16*x^3 + 43*x^4 + 138*x^5 + 527*x^6 + 2346*x^7 + ...
		

Crossrefs

Programs

  • Haskell
    a000674 n = sum $ zipWith (*) (a109449_row n) (1 : repeat 2)
    -- Reinhard Zumkeller, Nov 04 2013
    
  • Mathematica
    With[{nn=30},CoefficientList[Series[(Sec[x]+Tan[x])(2Exp[x]-1),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 04 2015 *)
  • Python
    from itertools import accumulate, islice
    def A000674_gen(): # generator of terms
        yield 1
        blist = (1,)
        while True:
            yield (blist := tuple(accumulate(reversed(blist),initial=2)))[-1]
    A000674_list = list(islice(A000674_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A040000(k). - Reinhard Zumkeller, Nov 04 2013
E.g.f.: (sec(x) + tan(x))*(2*exp(x) - 1). - Sergei N. Gladkovskii, Oct 28 2014
Binomial convolution of A000111 and A040000. - Michael Somos, Oct 30 2014
a(n) ~ n! * (2*exp(Pi/2)-1) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015

Extensions

More terms from Sean A. Irvine, Feb 20 2011