A000674 Boustrophedon transform of 1, 2, 2, 2, 2, ...
1, 3, 7, 16, 43, 138, 527, 2346, 11943, 68418, 435547, 3050026, 23300443, 192835698, 1718682167, 16412205306, 167173350543, 1809239622978, 20732358910387, 250773962554186, 3192953259262243, 42686640718266258, 597853508941160207
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 7*x^2 + 16*x^3 + 43*x^4 + 138*x^5 + 527*x^6 + 2346*x^7 + ...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform.
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (Abstract, pdf, ps).
- N. J. A. Sloane, Transforms.
- Wikipedia, Boustrophedon transform.
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a000674 n = sum $ zipWith (*) (a109449_row n) (1 : repeat 2) -- Reinhard Zumkeller, Nov 04 2013
-
Mathematica
With[{nn=30},CoefficientList[Series[(Sec[x]+Tan[x])(2Exp[x]-1),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 04 2015 *)
-
Python
from itertools import accumulate, islice def A000674_gen(): # generator of terms yield 1 blist = (1,) while True: yield (blist := tuple(accumulate(reversed(blist),initial=2)))[-1] A000674_list = list(islice(A000674_gen(),30)) # Chai Wah Wu, Jun 11 2022
Formula
E.g.f.: (sec(x) + tan(x))*(2*exp(x) - 1). - Sergei N. Gladkovskii, Oct 28 2014
a(n) ~ n! * (2*exp(Pi/2)-1) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Jun 12 2015
Extensions
More terms from Sean A. Irvine, Feb 20 2011