cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000704 Number of degree-n even permutations of order dividing 2.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 46, 106, 316, 1324, 5356, 18316, 63856, 272416, 1264264, 5409496, 22302736, 101343376, 507711376, 2495918224, 11798364736, 58074029056, 309240315616, 1670570920096, 8792390355904, 46886941456576, 264381946998976, 1533013006902976
Offset: 0

Views

Author

Keywords

Comments

Number of odd partitions of an n-element set avoiding the pattern 123 (see Goyt paper). - Ralf Stephan, May 08 2007

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap. 4, Problem 22).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(x^2/2) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 02 2019
    
  • Mathematica
    a[n_] := Sum[(4i - 1)!! Binomial[n, 4i], {i, 0, n/4}]; Array[a, 30, 0] (* Robert G. Wilson v *)
    With[{nn = 30}, CoefficientList[Series[Exp[x]Cosh[x^2/2], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 29 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(x^2/2) )) \\ G. C. Greubel, Jul 02 2019
    
  • Sage
    m = 30; T = taylor(exp(x)*cosh(x^2/2), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019

Formula

E.g.f.: exp(x)*cosh(x^2/2).
a(n) = Sum_{i = 0..floor(n/4)} C(n, 4i)*(4i-1)!!. - Ralf Stephan, May 08 2007 [Corrected by Sean A. Irvine, Mar 01 2011]
Conjecture: a(n) -3*a(n-1) +3*a(n-2) -a(n-3) -(n-1)*(n-3)*a(n-4) +(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 03 2014

Extensions

More terms from Harvey P. Dale, Nov 29 2013