A061132
Number of degree-n even permutations of order dividing 10.
Original entry on oeis.org
1, 1, 1, 1, 4, 40, 190, 610, 1660, 13420, 174700, 1326700, 30818800, 342140800, 2534931400, 16519411000, 143752426000, 4842417082000, 73620307162000, 687934401562000, 17165461784680000, 308493094924720000, 4585953613991980000, 53843602355379220000
Offset: 0
For n=4 the a(4)=4 solutions are (1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) (permutations in cyclic notation). - _Luis Manuel Rivera Martínez_, Jun 18 2019
- J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121-
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135.
-
With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^5/5 + x^10/10] + 1/2 Exp[x - x^2/2 + x^5/5 - x^10/10], {x, 0, nn}], x]* Range[0, nn]!] (* Luis Manuel Rivera Martínez, Jun 18 2019 *)
-
my(x='x+O('x^25)); Vec(serlaplace(1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10))) \\ Michel Marcus, Jun 18 2019
A061133
Number of degree-n even permutations of order exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 210, 5040, 37800, 201600, 2044350, 25530120, 213993780, 1692490800, 19767998250, 232823791200, 2235629476080, 23171222430720, 294649445112750, 4300403589581400, 55176842335916700, 660577269463243440
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061135
Number of degree-n even permutations of order exactly 10.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 9072, 90720, 498960, 25945920, 321080760, 2460970512, 14552417880, 115251776640, 4603779180000, 72193873752000, 681167139805152, 16976210865344640, 304992335584165320, 4548189212204243760
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061129
Number of degree-n even permutations of order dividing 4.
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 99856, 475696, 3889216, 31778176, 313696384, 2709911296, 23006784256, 179965340416, 1532217039616, 13081112406784, 147235213351936, 1657791879049216, 20132199908571136, 226466449808367616, 2542933338768769024
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(x^2/2 + x^4/4) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 02 2019
-
With[{n=30}, CoefficientList[Series[Exp[x]*Cosh[x^2/2 + x^4/4], {x, 0, n}], x]*Range[0, n]!] (* G. C. Greubel, Jul 02 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(x^2/2 + x^4/4) )) \\ G. C. Greubel, Jul 02 2019
-
m = 30; T = taylor(exp(x)*cosh(x^2/2 + x^4/4), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019
A001465
Number of degree-n odd permutations of order 2.
Original entry on oeis.org
0, 0, 1, 3, 6, 10, 30, 126, 448, 1296, 4140, 17380, 76296, 296088, 1126216, 4940040, 23904000, 110455936, 489602448, 2313783216, 11960299360, 61878663840, 309644323296, 1587272962528, 8699800221696, 48793502304000, 268603261201600, 1487663739072576
Offset: 0
For n=3, a(3)=3 and (1,2), (1, 3), (2, 3) are all the degree-2 odd permutations of order 2. - _Luis Manuel Rivera Martínez_, May 22 2018
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- Lev Glebsky, Melany Licón, and Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
- A. M. Goyt, Avoidance of partitions of a 3-element set, arXiv:math/0603481 [math.CO], 2006-2007.
- L. Moser and M. Wyman, On solutions of x^d = 1 in symmetric groups, Canad. J. Math., 7 (1955), 159-168.
-
a:= proc(n) option remember; `if`(n<4, (n-1)*n/2,
((2*n-3)*a(n-1)-(n-1)*a(n-2))/(n-2)+(n-1)*(n-3)*a(n-4))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 24 2018
-
Table[Sum[Binomial[n , 4 i + 2] (4 i + 2)!/(2^(2 i + 1) (2 i + 1)!), {i, 0, Floor[(n - 2)/4]}], {n, 0, 22}] (* Luis Manuel Rivera Martínez, May 22 2018 *)
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 11 2004
A061136
Number of degree-n odd permutations of order dividing 4.
Original entry on oeis.org
0, 0, 1, 3, 12, 40, 120, 336, 2128, 13392, 118800, 850960, 6004416, 38408448, 260321152, 1744135680, 17067141120, 167200393216, 1838196972288, 18345298804992, 181218866222080, 1673804042803200, 16992835499329536
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135,
A001465,
A061136 -
A061140.
A061131
Number of degree-n even permutations of order dividing 8.
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 136, 736, 4096, 20224, 326656, 2970496, 33826816, 291237376, 2129910784, 13607197696, 324498374656, 4599593353216, 52741679343616, 495632154179584, 7127212838772736, 94268828128854016, 2098358019107700736, 34030412427789500416
Offset: 0
- J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).
- Alois P. Heinz, Table of n, a(n) for n = 0..502
- Lev Glebsky, Melany Licón, Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
- T. Koda, M. Sato, Y. Tskegahara, 2-adic properties for the numbers of involutions in the alternating groups, J. Algebra Appl. 14 (2015), no. 4, 1550052 (21 pages).
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135.
A061140
Number of degree-n odd permutations of order exactly 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 5040, 45360, 226800, 831600, 9979200, 103783680, 2058376320, 23870246400, 265686220800, 2477893017600, 47031546481920, 656384611034880, 11972743148620800, 165640695384729600, 1969108505560627200
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A374262
Number of permutations of [n] such that the number of cycles of length k is a multiple of k for every k.
Original entry on oeis.org
1, 1, 1, 1, 4, 16, 46, 106, 316, 3564, 27756, 141516, 556656, 6678816, 73015944, 521124696, 6144018336, 75200767776, 677927254176, 4642387894944, 75217104395136, 1167068528384256, 12348761954020416, 97377968145352896, 882819252604721664, 66882151986021043200
Offset: 0
a(4) = 4: (1)(2)(3)(4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3).
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
add(combinat[multinomial](n, i$i*j, n-i^2*j)*
b(n-i^2*j, i-1)*(i-1)!^(i*j)/(i*j)!, j=0..n/i^2))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
A061130
Number of degree-n even permutations of order dividing 6.
Original entry on oeis.org
1, 1, 1, 3, 12, 36, 126, 666, 6588, 44892, 237996, 2204676, 26370576, 219140208, 1720782792, 19941776856, 234038005776, 2243409386256, 23225205107088, 295070141019312, 4303459657780416, 55200265166477376, 660776587455193056
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
Showing 1-10 of 16 results.
Comments