A000712 Generating function = Product_{m>=1} 1/(1 - x^m)^2; a(n) = number of partitions of n into parts of 2 kinds.
1, 2, 5, 10, 20, 36, 65, 110, 185, 300, 481, 752, 1165, 1770, 2665, 3956, 5822, 8470, 12230, 17490, 24842, 35002, 49010, 68150, 94235, 129512, 177087, 240840, 326015, 439190, 589128, 786814, 1046705, 1386930, 1831065, 2408658, 3157789, 4126070, 5374390
Offset: 0
Examples
Assume there are integers of two kinds: k and k'; then a(3) = 10 since 3 has the following partitions into parts of two kinds: 111, 111', 11'1', 1'1'1', 12, 1'2, 12', 1'2', 3, and 3'. - _W. Edwin Clark_, Jun 24 2011 There are a(4)=20 partitions of 4 into 2 sorts of parts. Here p:s stands for "part p of sort s": 01: [ 1:0 1:0 1:0 1:0 ] 02: [ 1:0 1:0 1:0 1:1 ] 03: [ 1:0 1:0 1:1 1:1 ] 04: [ 1:0 1:1 1:1 1:1 ] 05: [ 1:1 1:1 1:1 1:1 ] 06: [ 2:0 1:0 1:0 ] 07: [ 2:0 1:0 1:1 ] 08: [ 2:0 1:1 1:1 ] 09: [ 2:0 2:0 ] 10: [ 2:0 2:1 ] 11: [ 2:1 1:0 1:0 ] 12: [ 2:1 1:0 1:1 ] 13: [ 2:1 1:1 1:1 ] 14: [ 2:1 2:1 ] 15: [ 3:0 1:0 ] 16: [ 3:0 1:1 ] 17: [ 3:1 1:0 ] 18: [ 3:1 1:1 ] 19: [ 4:0 ] 20: [ 4:1 ] - _Joerg Arndt_, Apr 28 2013 The a(4)=20 ordered pairs (R,S) of partitions for n=4 are ([4], []) ([3, 1], []) ([2, 2], []) ([2, 1, 1], []) ([1, 1, 1, 1], []) ([3], [1]) ([2, 1], [1]) ([1, 1, 1], [1]) ([2], [2]) ([2], [1, 1]) ([1, 1], [2]) ([1, 1], [1, 1]) ([1], [3]) ([1], [2, 1]) ([1], [1, 1, 1]) ([], [4]) ([], [3, 1]) ([], [2, 2]) ([], [2, 1, 1]) ([], [1, 1, 1, 1]) This list was created with the Sage command for P in PartitionTuples(2,4) : print P; - _Joerg Arndt_, Apr 29 2013 G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 + 185*x^8 + ...
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Proposition 2.5.2 on page 78.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 501 terms from T. D. Noe)
- Arvind Ayyer, Amritanshu Prasad, and Steven Spallone, Macdonald trees and determinants of representations for finite Coxeter groups, arXiv:1812.00608 [math.RT], 2018.
- M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys. 25 (1984) 3171, table 1.
- Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
- Jan Brandts and A Cihangir, Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
- E. R. Canfield, C. D. Savage and H. S. Wilf, Regularly spaced subsums of integer partitions, arXiv:math/0308061 [math.CO], 2003.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Hilbert Space Fragmentation in the Chiral Luttinger Liquid, arXiv:2409.10359 [cond-mat.str-el], 2024. See pp. 8, 11.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Momentum-space modulated symmetries in the Luttinger liquid, Phys. Rev. B (2025) Vol. 111, Art. No. 165105. See p. 9.
- B. F. Chen, E. Ghorbani, and K. B. Wong, Cyclic decomposition of k-permutations and eigenvalues of the arrangement graphs, Electronic J. Combin. 20(4) (2013), #P22.
- W. Y. C. Chen, K. Q. Ji and H. S. Wilf, BG-ranks and 2-cores, arXiv:math/0605474 [math.CO], 2006.
- W. Edwin Clark, Mohamed Elhamdadi, Xiang-dong Hou, Masahico Saito and Timothy Yeatman, Connected Quandles Associated with Pointed Abelian Groups, arXiv preprint arXiv:1107.5777 [math.RA], 2011.
- W. Edwin Clark and Xiang-dong Hou, Galkin Quandles, Pointed Abelian Groups, and Sequence A000712 arXiv:1108.2215 [math.CO], Aug 10, 2011. [added by Jonathan Vos Post]
- Shouvik Datta, M. R. Gaberdiel, W. Li, and C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
- M. De Salvo, D. Fasino, D. Freni, and G. Lo Faro, Fully simple semihypergroups, transitive digraphs, and sequence A000712, Journal of Algebra, Volume 415, 1 October 2014, pp. 65-87.
- Mario De Salvo, Dario Fasino, Domenico Freni, and Giovanni Lo Faro, Semihypergroups Obtained by Merging of 0-semigroups with Groups, Filomat (2018) Vol. 32, No. 12, 4177-4194.
- Paul Hammond and Richard Lewis, Congruences in ordered pairs of partitions, Int. J. Math. Math. Sci. (2004), no.45--48, 2509--2512.
- Ruth Hoffmann, Özgür Akgün, and Christopher Jefferson, Composable Constraint Models for Permutation Enumeration, arXiv:2311.17581 [cs.DM], 2023.
- Saud Hussein, An Identity for the Partition Function Involving Parts of k Different Magnitudes, arXiv:1806.05416 [math.NT], 2018.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 129.
- Han Mao Kiah, Anshoo Tandon, and Mehul Motani, Generalized Sphere-Packing Bound for Subblock-Constrained Codes, arXiv:1901.00387 [cs.IT], 2019.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- Yen-chi R. Lin and Shu-Yen Pan, A recursive relation for bipartition numbers, arXiv:2406.14851 [math.CO], 2024.
- P. Nataf, M. Lajkó, A. Wietek, K. Penc, F. Mila, and A. M. Läuchli, Chiral spin liquids in triangular lattice SU (N) fermionic Mott insulators with artificial gauge fields, arXiv preprint arXiv:1601.00958 [cond-mat.quant-gas], 2016.
- Sylvain Prolhac, Spectrum of the totally asymmetric simple exclusion process on a periodic lattice--first excited states, arXiv preprint arXiv:1404.1315 [cond-mat.stat-mech], 2014.
- N. J. A. Sloane, Transforms.
- Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Crossrefs
Programs
-
Haskell
a000712 = p a008619_list where p _ 0 = 1 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m -- Reinhard Zumkeller, Nov 06 2012
-
Julia
# DedekindEta is defined in A000594. A000712List(len) = DedekindEta(len, -2) A000712List(39) |> println # Peter Luschny, Mar 09 2018
-
Maple
with(combinat): A000712:= n-> add(numbpart(k)*numbpart(n-k), k=0..n): seq(A000712(n), n=0..40); # Emeric Deutsch
-
Mathematica
CoefficientList[ Series[ Product[1/(1 - x^n)^2, {n, 40}], {x, 0, 37}], x]; (* Robert G. Wilson v, Feb 03 2005 *) Table[Count[Partitions[2*n], q_ /; Tr[(-1)^Mod[Flatten[Position[q, ?OddQ]], 2]] === 0], {n, 12}] (* _Wouter Meeussen, Apr 17 2013 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x]^-2, {x, 0, n}]; (* Michael Somos, Oct 12 2015 *) Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@n], {n, 0, 15}] (* Robert Price, Jun 15 2020 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / eta(x + A)^2, n))}; /* Michael Somos, Nov 14 2002 */
-
PARI
Vec(1/eta('x+O('x^66))^2) /* Joerg Arndt, Jun 25 2011 */
-
Python
from sympy import npartitions def A000712(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) # Chai Wah Wu, Sep 25 2023
-
SageMath
# uses[EulerTransform from A166861] a = BinaryRecurrenceSequence(0, 1, 2, 2) b = EulerTransform(a) print([b(n) for n in range(40)]) # Peter Luschny, Nov 11 2020
Formula
a(n) = Sum_{k=0..n} p(k)*p(n-k), where p(n) = A000041(n).
Euler transform of period 1 sequence [ 2, 2, 2, ...]. - Michael Somos, Jul 22 2003
a(0) = 1, a(n) = (1/n)*Sum_{k=0..n-1} 2*a(k)*sigma_1(n-k). - Joerg Arndt, Feb 05 2011
a(n) ~ (1/12)*3^(1/4)*n^(-5/4)*exp((2/3)*sqrt(3)*Pi*sqrt(n)). - Joe Keane (jgk(AT)jgk.org), Sep 13 2002
More precise asymptotics: a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(3/4)*n^(5/4)) * (1 - (Pi/(12*sqrt(3)) + 15*sqrt(3)/(16*Pi)) / sqrt(n) + (Pi^2/864 + 315/(512*Pi^2) + 35/192)/n). - Vaclav Kotesovec, Jan 22 2017
From Peter Bala, Jan 26 2016: (Start)
a(n) is odd iff n = 2*m and p(m) is odd.
a(n) = (2/n)*Sum_{k = 0..n} k*p(k)*p(n-k) for n >= 1.
Conjecture: : a(n) is divisible by 5 when n is congruent to 2, 3 or 4 modulo 5. (End)
Conjecture is proved in Hammond and Lewis. - Yen-chi R. Lin, Jun 24 2024
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
With the convention that a(n) = 0 for n < 0 we have the recurrence a(n) = g(n) + Sum_{k >= 1} (-1)^(k+1)*(2*k + 1)*a(n - k*(k + 1)/2), where g(n) = (-1)^m if n = m*(3*m - 1)/2 is a generalized pentagonal number (A001318) else g(n) = 0. For example, n = 7 = -2*(3*(-2) - 1)/2 is a pentagonal number, g(7) = 1, and so a(7) = 1 + 3*a(6) - 5*a(4) + 7*a(1) = 1 + 195 - 100 + 14 = 110. - Peter Bala, Apr 06 2022
a(n) = p(n/2) + Sum_{k \in Z, k != 0} (-1)^{k-1} a(n-k^2), here p(n) = A000041(n) and p(x) = 0 when x is not an integer. - Yen-chi R. Lin, Jun 24 2024
Conjecture: a(25*n + 23) is divisible by 25 (checked for n < 400). - Peter Bala, Jan 13 2025
Extensions
More terms from Joe Keane (jgk(AT)jgk.org), Nov 17 2001
More terms from Michele Dondi (blazar(AT)lcm.mi.infn.it), Jun 15 2004
Definition rewritten by N. J. A. Sloane, Apr 02 2022
Comments