cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A282941 a(n) = A000730(7*n).

Original entry on oeis.org

1, 41, -176, 98, 322, -181, -140, -489, 112, 889, 14, -560, 125, 154, 756, -1317, -1778, 1554, -1218, 2688, 1764, -980, 71, -1575, 14, -1638, -419, 56, -1988, -2716, 6223, 6860, 1302, -700, -3416, -4733, -2548, -4725, 3836, 1106, 2631, 5096, -5656, 2660, -7875
Offset: 0

Views

Author

Seiichi Manyama, Feb 25 2017

Keywords

Examples

			G.f.: 1 + 41*q - 176*q^2 + 98*q^3 + 322*q^4 - 181*q^5 - 140*q^6 - 489*q^7 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 191.

Crossrefs

Formula

G.f.: Product_{n>=1} (1 - q^n)^8/(1 - q^(7*n)) + 49*q*(Product_{n>=1} (1 - q^n)^4*(1 - q^(7*n))^3).
a(n) = (-1)^j mod 7 if n = j*(3*j - 1)/2 for all j in Z; otherwise a(n) = 0 mod 7.
a(n) = A282942(n) mod 49.

A286354 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -3, -1, 0, 0, 1, -4, 0, 2, 0, 0, 1, -5, 2, 5, 1, 1, 0, 1, -6, 5, 8, 0, 2, 0, 0, 1, -7, 9, 10, -5, 0, -2, 1, 0, 1, -8, 14, 10, -15, -4, -7, 0, 0, 0, 1, -9, 20, 7, -30, -6, -10, 0, -2, 0, 0, 1, -10, 27, 0, -49, 0, -5, 8, 0, -2, 0, 0, 1, -11, 35, -12, -70, 21, 11, 25, 9, 0, 1, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 08 2017

Keywords

Comments

A(n,k) number of partitions of n into an even number of distinct parts minus number of partitions of n into an odd number of distinct parts with k types of each part.

Examples

			A(3,2) = 2 because we have [2, 1], [2', 1], [2, 1'], [2', 1'] (number of partitions of 3 into an even number of distinct parts with 2 types of each part), [3], [3'] (number of partitions of 3 into an odd number of distinct parts with 2 types of each part) and 4 - 2 = 2.
Square array begins:
1,  1,  1,  1,  1,   1,  ...
0, -1, -2, -3, -4,  -5,  ...
0, -1, -1,  0,  2,   5,  ...
0,  0,  2,  5,  8,  10,  ...
0,  0,  1,  0, -5, -15,  ...
0,  1,  2,  0, -4,  -6,  ...
		

Crossrefs

Main diagonal gives A008705.
Antidiagonal sums give A299105.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, -k*
          add(numtheory[sigma](j)*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^i)^k , {i, Infinity}], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x, x, Infinity]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[(-1)^i*x^(i*(3*i + 1)/2), {i, -Infinity, Infinity}]^k, {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^j)^k.
G.f. of column k: (Sum_{j=-inf..inf} (-1)^j*x^(j*(3*j+1)/2))^k.
Column k is the Euler transform of period 1 sequence [-k, -k, -k, ...].

A339706 Dirichlet g.f.: Product_{k>=2} (1 - k^(-s))^7.

Original entry on oeis.org

1, -7, -7, 14, -7, 42, -7, 7, 14, 42, -7, -56, -7, 42, 42, -49, -7, -56, -7, -56, 42, 42, -7, -105, 14, 42, 7, -56, -7, -203, -7, 21, 42, 42, 42, -35, -7, 42, 42, -105, -7, -203, -7, -56, -56, 42, -7, 238, 14, -56, 42, -56, -7, -105, 42, -105, 42, 42, -7, 91, -7, 42, -56, 35, 42
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2020

Keywords

Crossrefs

Formula

a(1) = 1; a(n) = -Sum_{d|n, d < n} A339322(n/d) * a(d).
a(p^k) = A000730(k) for prime p.

A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Comments

The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.

Examples

			[ 0] 1,   0,   0,    0,     0,    0,     0,     0,     0,     0, ... A000007
[ 1] 1,  -1,  -1,    0,     0,    1,     0,     1,     0,     0, ... A010815
[ 2] 1,  -2,  -1,    2,     1,    2,    -2,     0,    -2,    -2, ... A002107
[ 3] 1,  -3,   0,    5,     0,    0,    -7,     0,     0,     0, ... A010816
[ 4] 1,  -4,   2,    8,    -5,   -4,   -10,     8,     9,     0, ... A000727
[ 5] 1,  -5,   5,   10,   -15,   -6,    -5,    25,    15,   -20, ... A000728
[ 6] 1,  -6,   9,   10,   -30,    0,    11,    42,     0,   -70, ... A000729
[ 7] 1,  -7,  14,    7,   -49,   21,    35,    41,   -49,  -133, ... A000730
[ 8] 1,  -8,  20,    0,   -70,   64,    56,     0,  -125,  -160, ... A000731
[ 9] 1,  -9,  27,  -12,   -90,  135,    54,   -99,  -189,   -85, ... A010817
[10] 1, -10,  35,  -30,  -105,  238,     0,  -260,  -165,   140, ... A010818
    A001489,  v , A167541, v , A319931,  v ,         diagonal: A008705
           A080956       A319930      A319932
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.

Crossrefs

Transpose of A286354.
Cf. A078521, A319574 (JacobiTheta3).

Programs

  • Julia
    # DedekindEta is defined in A000594
    for n in 0:10
        DedekindEta(10, n) |> println
    end
  • Maple
    DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
    A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
    seq(coeff(%, x, j), j=0..len-1) end:
    seq(print([n], A319933row(n, 10)), n=0..10);
  • Mathematica
    eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
    A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Sage
    from sage.modular.etaproducts import qexp_eta
    def A319933row(n, len):
        return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
    for n in (0..10):
        print(A319933row(n, 10))
    
Showing 1-4 of 4 results.