cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000777 a(n) = (n+2)*Catalan(n) - 1.

Original entry on oeis.org

1, 2, 7, 24, 83, 293, 1055, 3860, 14299, 53481, 201551, 764217, 2912167, 11143499, 42791039, 164812364, 636438059, 2463251009, 9552773999, 37112526989, 144410649239, 562724141459, 2195581527359, 8576490341249, 33537507830423, 131272552839203, 514285886020255
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = A038665(n-1) - 1.

Programs

  • Magma
    [(n+2)*Catalan(n)-1: n in [0..30]]; // Vincenzo Librandi, Sep 11 2016
  • Maple
    [seq((binomial(2*n,n)/(n+1))*(n+2)-1,n=0..27)]; # Zerinvary Lajos, Jun 25 2006
  • Mathematica
    Table[(n + 2)*CatalanNumber[n] - 1, {n, 0, 20}] (* T. D. Noe, Jun 20 2012 *)
  • PARI
    a(n) = (n+2)*binomial(2*n,n)/(n+1) - 1; \\ Michel Marcus, Sep 11 2016
    

Formula

a(n) = (binomial(2*n,n)/(n+1))*(n+2) - 1. - Zerinvary Lajos, Jun 25 2006
G.f.: (1/x)*(1/2 + (6*x-1)/(2*sqrt(1-4*x))-x/(1-x)). - Vladimir Kruchinin, Aug 18 2010
D-finite with recurrence: (n+1)*a(n) + 4*(-3*n+1)*a(n-1) + 5*(9*n-13)*a(n-2) + 2*(-29*n+72)*a(n-3) + 12*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Jun 11 2019