cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008305 Triangle read by rows: a(n,k) = number of permutations of [n] allowing i->i+j (mod n), j=0..k-1.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 9, 24, 1, 2, 13, 44, 120, 1, 2, 20, 80, 265, 720, 1, 2, 31, 144, 579, 1854, 5040, 1, 2, 49, 264, 1265, 4738, 14833, 40320, 1, 2, 78, 484, 2783, 12072, 43387, 133496, 362880, 1, 2, 125, 888, 6208, 30818, 126565, 439792, 1334961, 3628800
Offset: 1

Views

Author

Keywords

Comments

The point is, we are counting permutations of [n] = {1,2,...,n} with the restriction that i cannot move by more than k places. Hence the phrase "permutations with restricted displacements". - N. J. A. Sloane, Mar 07 2014
The triangle could have been defined as an infinite square array by setting a(n,k) = n! for k >= n.

Examples

			a(4,3) = 9 because 9 permutations of {1,2,3,4} are allowed if each i can be placed on 3 positions i+0, i+1, i+2 (mod 4): 1234, 1423, 1432, 3124, 3214, 3412, 4123, 4132, 4213.
Triangle begins:
  1,
  1, 2,
  1, 2,   6,
  1, 2,   9,  24,
  1, 2,  13,  44,  120,
  1, 2,  20,  80,  265,   720,
  1, 2,  31, 144,  579,  1854,   5040,
  1, 2,  49, 264, 1265,  4738,  14833,  40320,
  1, 2,  78, 484, 2783, 12072,  43387, 133496,  362880,
  1, 2, 125, 888, 6208, 30818, 126565, 439792, 1334961, 3628800,
  ...
		

References

  • H. Minc, Permanents, Encyc. Math. #6, 1978, p. 48

Crossrefs

Diagonals (from the right): A000142, A000166, A000179, A000183, A004307, A189389, A184965.
Diagonals (from the left): A000211 or A048162, 4*A000382 or A004306 or A000803, A000804, A000805.
a(n,ceiling(n/2)) gives A306738.

Programs

  • Maple
    with(LinearAlgebra):
    a:= (n, k)-> Permanent(Matrix(n,
                 (i, j)-> `if`(0<=j-i and j-i
    				
  • Mathematica
    a[n_, k_] := Permanent[Table[If[0 <= j-i && j-i < k || j-i < k-n, 1, 0], {i, 1,n}, {j, 1, n}]]; Table[Table[a[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

Formula

a(n,k) = per(sum(P^j, j=0..k-1)), where P is n X n, P[ i, i+1 (mod n) ]=1, 0's otherwise.
a(n,n) - a(n,n-1) = A002467(n). - Alois P. Heinz, Mar 06 2019

Extensions

Comments and more terms from Len Smiley
More terms from Vladeta Jovovic, Oct 02 2003
Edited by Alois P. Heinz, Dec 18 2010

A004306 Rook polynomials.

Original entry on oeis.org

1, 1, 2, 6, 24, 44, 80, 144, 264, 484, 888, 1632, 3000, 5516, 10144, 18656, 34312, 63108, 116072, 213488, 392664, 722220, 1328368, 2443248, 4493832, 8265444, 15202520, 27961792, 51429752, 94594060, 173985600, 320009408, 588589064, 1082584068, 1991182536
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of perfect matchings in the circulant graph with 2*n vertices with jumps 1 and 3. - Robert Israel, Jan 24 2019

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000803. 4th column of A008305.
Equals 2 * (A001644(n) + 1), n>3.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+ 2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4) )); // G. C. Greubel, Apr 22 2019
    
  • Mathematica
    Join[{1,1,2,6},LinearRecurrence[{2,0,0,-1},{24,44,80,144},40]] (* or *) CoefficientList[ Series[ (1-x+2x^3+13x^4- 3x^5- 6x^6- 10x^7)/ (1-2x+ x^4),{x,0,40}],x] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1 -2*x+x^4)) \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    ((1-x+2*x^3+13*x^4-3*x^5-6*x^6-10*x^7)/(1-2*x+x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

Formula

G.f.: (1 - x + 2*x^3 + 13*x^4 - 3*x^5 - 6*x^6 - 10*x^7)/(1 - 2*x + x^4).
a(n) = 2*a(n-1) - a(n-4); a(0)=1, a(1)=1, a(2)=2, a(3)=6, a(4)=24, a(5)=44, a(6)=80, a(7)=144. - Harvey P. Dale, Dec 13 2011
Showing 1-2 of 2 results.