cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000915 Stirling numbers of first kind s(n+4, n).

Original entry on oeis.org

24, 274, 1624, 6769, 22449, 63273, 157773, 357423, 749463, 1474473, 2749747, 4899622, 8394022, 13896582, 22323822, 34916946, 53327946, 79721796, 116896626, 168423871, 238810495, 333685495, 460012995, 626334345, 843041745, 1122686019, 1480321269, 1933889244
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 227, #16.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 259.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 48.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008275, A094216, A001303 for s(n+3,n), A053567 for s(n+5,n).
Cf. A001298.

Programs

  • Maple
    A000915 := proc(n)
        combinat[stirling1](n+4,n) ;
    end proc:
    seq(A000915(n),n=1..10) ; # R. J. Mathar, May 19 2016
  • Mathematica
    Table[Binomial[n + 4, 5]*(15*n^3 + 150*n^2 + 485*n + 502)/48, {n, 50}] (* T. D. Noe, Jun 20 2012 *)
    a[ n_] := n (n + 1) (n + 2) (n + 3) (n + 4) (15 n^3 + 150 n^2 + 485 n + 502) / 5760; (* Michael Somos, Sep 04 2017 *)
  • PARI
    {a(n) = n * (n+1) * (n+2) * (n+3) * (n+4) * (15*n^3+ 150*n^2 + 485*n + 502) / 5760}; /* Michael Somos, Sep 04 2017 */
    
  • Sage
    [stirling_number1(n,n-4) for n in range(5, 30)] # Zerinvary Lajos, May 16 2009

Formula

a(n) = binomial(n+4, 5)*(15*n^3 + 150*n^2 + 485*n + 502)/48. - André F. Labossière, Sep 30 2004
Stirling1(n+1, n-3) = Sum_{L=1..n} (Sum_{k=L+1..n} (Sum_{j=k+1..n} (Sum_{i=j+1..n} i*j*k*L))), cf. A001298. - Vladeta Jovovic, Jan 31 2005
E.g.f. with offset 4: exp(x)*(Sum_{m=0..4} A112486(4,m)*(x^(4+m))/(4+m)!).
a(n) = (f(n+3, 4)/8!)*Sum_{m=0..min(4, n-1)} A112486(4,m)*f(8, 4-m)*f(n-1, m), with the falling factorials f(n, m):=n*(n-1)*...*(n-(m-1)).
G.f.: x*(24 + 58*x + 22*x^2 + x^3)/(1 - x)^9, see the k=3 row of triangle A112007 for [24, 58, 22, 1].
a(n) = A001298(-4-n) for all n in Z. - Michael Somos, Sep 04 2017

Extensions

More terms from Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 17 2000