A000926 Euler's "numerus idoneus" (or "numeri idonei", or idoneal, or suitable, or convenient numbers).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365, 1848
Offset: 1
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 97 at p. 272.
- Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 425-430.
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Section 3.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1848, p. 146, Ellipses, Paris 2008.
- C. F. Gauss, Disquisitiones Arithmeticae, 1801. English translation: Yale University Press, New Haven, CT, 1966, Sections 329-334.
- G. B. Mathews, Theory of Numbers, Chelsea, no date, p. 263.
- Paulo Ribenboim, My Numbers, My Friends, Chapter 11, Springer-Verlag, NY, 2000.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 142-143.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 103.
- A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see pp. 188, 219-226.
Links
- S. Chowla, An extension of Heilbronn's class number theorem, Quart. J. math., 5 (1934), 304-307.
- K. S. Brown, Mathpages, Numeri Idonei
- Günther Frei, Les nombres convenables de Leonhard Euler, Publications Université de Besançon, 1983-1984.
- Günther Frei, Euler's convenient numbers, Math. Intell. Vol. 7 No. 3 (1985), 55-58 and 64.
- E. Hertel, C. Richter, Tiling Convex Polygons with Congruent Equilateral Triangles, Discrete & Computational Geometry, 2014, DOI 10.1007/s00454-014-9576-7. Mentions this sequence. - _N. J. A. Sloane_, Mar 17 2014
- O.-H. Keller, Über die "Numeri idonei" von Euler, Beitraege Algebra Geom., 16 (1983), 79-91. [Math. Rev. 85m:11019]
- Robert Krzyzanowski, Euler's Convenient Numbers
- David Masser, Alan Baker, arXiv:2010.10256 [math.HO], 2020. See p. 24.
- Eric Rains, Comments on A000926
- Paulo Ribenboim, Galimatias Arithmeticae, in Mathematics Magazine 71(5) 339 1998 MAA.
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- J. Steinig, On Euler's ideoneal numbers, Elemente Math., 21 (1966), 73-88.
- M. Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004
- P. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith., 22 (1973), 117-124.
- Eric Weisstein's World of Mathematics, Idoneal Number
Crossrefs
Programs
-
Mathematica
noSol={}; Do[lim=Ceiling[(n-2)/3]; found=False; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, found=True; Break[]], {a, 1, lim-1}, {b, a+1, lim}]; If[ !found, AppendTo[noSol, n]], {n, 10000}]; noSol (* T. D. Noe, Apr 08 2004 *)
-
PARI
A000926(Nmax=1e9)={for(n=1,Nmax,for(a=1,sqrtint(n\3),for(b=a+1,(n-a)\(3*a+2),n-a<(2*a+1+b)*b & break;(n-a*b)%(a+b)==0 & next(3)));print1(n", "))} \\ M. F. Hasler, Dec 04 2007
-
PARI
ok(n)=!#select(k->k<>2, quadclassunit(-4*n).cyc) \\ Andrew Howroyd, Jun 08 2018
Extensions
Edited by N. J. A. Sloane, Dec 07 2007
Comments