cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000927 "First factor" (or relative class number) h- for cyclotomic field Q( exp(2 Pi / prime(n)) ).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 8, 9, 37, 121, 211, 695, 4889, 41241, 76301, 853513, 3882809, 11957417, 100146415, 838216959, 13379363737, 411322824001, 3547404378125, 9069094643165, 63434933542623, 161784800122409, 1612072001362952, 2604529186263992195, 28496379729272136525, 646901570175200968153, 1753848916484925681747, 687887859687174720123201, 2333546653547742584439257, 56234327700401832767069245, 2708534744692077051875131636
Offset: 1

Views

Author

Keywords

Comments

Washington gives a very extensive table. But beware errors: Washington incorrectly gives a(17) = 41421, a(25) = 411322842001 (corrected in the second edition).

Examples

			For n = 9, prime(9) = 23, a(9) = 3.
For n = 38, prime(38) = 163, a(38) = 2708534744692077051875131636.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 429.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, pp. 353-360 (1st edition) pp. 412-420 (2nd edition).

Crossrefs

Subsequence of A061653.
For the full class number h = h- * h+, see A055513, which agrees for the first 36 terms, assuming the Generalized Riemann Hypothesis.

Programs

  • Maple
    f:= proc(n) uses LinearAlgebra;
      local p,M;
      p:= ithprime(n);
      M:= Matrix((p-3)/2,(p-3)/2,(i,j) -> floor((i+1)*(j+2)/p) - floor(i*(j+2)/p));
      abs(Determinant(M));
    end proc:
    1, seq(f(n),n=3..50); # Robert Israel, Sep 20 2016
  • Mathematica
    a[n_]:= With[{p = Prime[n]}, If[n<4, 1, Abs[ Det[ Table[ Quotient[ (i+2)*(j+2), p] - Quotient[ (i+1)*(j+2), p], {i, 1, (p-1)/2-2}, {j, 1, (p-1)/2-2}]]]]]; Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Aug 01 2013, translated from Pari; modified by G. C. Greubel, Aug 08 2019 *)
  • PARI
    { A000927(n) = if(n<3,return(1)); my(p=prime(n)); abs( matdet(matrix((p-1)/2-2, (p-1)/2-2, i, j, ((i+2)*(j+2))\p - ((i+1)*(j+2))\p)) ); } \\ Max Alekseyev, Oct 31 2012; corrected by G. C. Greubel and Michel Marcus, Aug 07 2019

Formula

For n>2, a(n) equals absolute value of determinant of the matrix with entries floor(i*j/p)-floor((i-1)*j/p), 3 <= i,j <= (p-1)/2, where p = prime(n) = A000040(n). - Max Alekseyev, Oct 31 2012
a(n) = A061653(A000040(n)).

Extensions

Edited by Max Alekseyev, Oct 25 2012
a(1)=1 prepended by Max Alekseyev, Mar 05 2018