A000929 Dimension of n-th degree part of Steenrod algebra.
1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 20, 22, 23, 26, 28, 29, 32, 35, 37, 41, 45, 47, 51, 55, 58, 63, 68, 72, 77, 82, 86, 92, 98, 103, 111, 118, 123, 131, 139, 145, 154, 164, 171, 180, 190, 198, 208, 219, 229, 241, 253, 264, 278, 291
Offset: 0
Keywords
Examples
From _Joerg Arndt_, Dec 28 2012: (Start) There are a(17)=13 partitions of 17 into Mersenne numbers: [ 1] [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] [ 2] [ 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] [ 3] [ 3 3 1 1 1 1 1 1 1 1 1 1 1 ] [ 4] [ 3 3 3 1 1 1 1 1 1 1 1 ] [ 5] [ 3 3 3 3 1 1 1 1 1 ] [ 6] [ 3 3 3 3 3 1 1 ] [ 7] [ 7 1 1 1 1 1 1 1 1 1 1 ] [ 8] [ 7 3 1 1 1 1 1 1 1 ] [ 9] [ 7 3 3 1 1 1 1 ] [10] [ 7 3 3 3 1 ] [11] [ 7 7 1 1 1 ] [12] [ 7 7 3 ] [13] [ 15 1 1 ] There are a(17)=13 partitions p(1)+p(2)+...+p(m) = 17 such that 2*p(k) <= p(k-1): [ 1] [ 10 4 2 1 ] [ 2] [ 10 5 2 ] [ 3] [ 11 4 2 ] [ 4] [ 11 5 1 ] [ 5] [ 12 4 1 ] [ 6] [ 12 5 ] [ 7] [ 13 3 1 ] [ 8] [ 13 4 ] [ 9] [ 14 2 1 ] [10] [ 14 3 ] [11] [ 15 2 ] [12] [ 16 1 ] [13] [ 17 ] (End)
References
- Steenrod, N. and Epstein, D., Cohomology Operations, Princeton Univ. Press, 1962.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 513 terms from Reinhard Zumkeller)
- P. C. P. Bhatt, An interesting way to partition a number, Inform. Process. Lett., 71, 1999, 141-148.
- W. M. Y. Goh, P. Hitczenko and A. Shokoufandeh, s-partitions, Inform. Process. Lett., 82, 2002, 327-329.
- Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
Programs
-
Maple
The sequence is C(n,n) where C := proc(m,n) option remember; local k, a; if m = 0 then if n = 0 then 1 else 0 fi; elif m > n then C(n,n); else a := 0; for k from 0 to m do a := a + C(floor(k/2), n-k) od; a; fi end; g:=1/product(1-x^(2^k-1),k=1..10): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..64); # Emeric Deutsch, Mar 06 2006 # alternative Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, min(n-j, iquo(j, 2))), j=1..i)) end: a:= n-> b(n$2): seq(a(n), n=0..80); # Alois P. Heinz, Mar 14 2021
-
Mathematica
nn = 63; CoefficientList[ Series[Product[1/(1 - x^(2^i - 1)), {i, 1, nn}], {x, 0, nn}], x] (* Geoffrey Critzer, Jul 09 2013 *)
-
PARI
N=166; q='q+O('q^N); gf=1/prod(n=1,1+ceil(log(N)/log(2)), 1-q^(2^n - 1) ); Vec(gf) /* Joerg Arndt, Oct 06 2012 */
Formula
G.f.: 1/Product_{i>=1} (1 - x^(2^i-1)). - Simon Plouffe (corrected by Joerg Arndt, Dec 28 2012)
a(n) = p(n,1) with p(n,k) = if k <= n then p(n-k,k) + p(n,2*k+1), otherwise 0^n. - Reinhard Zumkeller, Mar 18 2009
G.f.: Sum_{i>=0} x^(2^i-1) / Product_{j=1..i} (1 - x^(2^j-1)). - Ilya Gutkovskiy, Jun 05 2017
Comments