cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006656 Denominators of expansion of sinh x / sin x.

Original entry on oeis.org

1, 3, 3, 21, 9, 11, 21, 9, 1, 133, 693, 69, 7, 189, 3, 7161, 231, 7, 399, 63, 77, 3311, 4347, 987, 49, 33, 33, 627, 57, 59, 7161, 2079, 11, 10787, 207, 2343, 1463, 4389, 231, 1659, 6237, 913, 9933, 693, 161, 7301833, 19184319, 4389, 11, 99, 33
Offset: 0

Views

Author

Keywords

Comments

Also denominators of the expansion of tan(x)/tanh(x). - G. C. Greubel, Jan 31 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=120; R:=PowerSeriesRing(Rationals(), m);
    b:= Coefficients(R!(Laplace( Sinh(x)/Sin(x) )));
    [Denominator( b[2*n-1] ): n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jan 31 2022
    
  • Mathematica
    With[{nn=100},Denominator[Take[CoefficientList[Series[Sinh[x]/Sin[x],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]]] (* Harvey P. Dale, Jul 10 2013 *)
  • Sage
    [denominator( factorial(2*n)*( sinh(x)/sin(x) ).series(x, 2*n+3).list()[2*n] ) for n in (0..60)] # G. C. Greubel, Jan 31 2022

Extensions

More terms from Harvey P. Dale, Jul 10 2013

A296628 Numerators of coefficients in expansion of e.g.f. tan(x)/tanh(x) (even powers only).

Original entry on oeis.org

1, 4, 16, 1408, 13568, 606208, 61878272, 1956380672, 21143027712, 348742016303104, 279852224852525056, 5217315235815227392, 118411884225053589504, 842233813811702133686272, 4096134057254358725165056, 3447514330976633343761929207808, 44711197753944482628093599547392
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 17 2017

Keywords

Comments

The values of the denominators are similar to A006656 up to n = 138, but differ after.

Examples

			tan(x)/tanh(x) = 1 + (4/3)*x^2/2! + (16/3)*x^4/4! + (1408/21)*x^6/6! + (13568/9)*x^8/8! + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m);
    b:= Coefficients(R!(Laplace( Tan(x)/Tanh(x) )));
    [Numerator( b[2*n-1] ): n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jan 31 2022
    
  • Mathematica
    nmax = 16; Numerator[Table[(CoefficientList[Series[Tan[x]/Tanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]]
  • Sage
    [numerator( factorial(2*n)*( tan(x)/tanh(x) ).series(x, 2*n+3).list()[2*n] ) for n in (0..40)] # G. C. Greubel, Jan 31 2022

Formula

Numerators of coefficients in expansion of e.g.f. tanh(x)/tan(x) (even powers only, absolute values).
Numerators of coefficients in expansion of e.g.f. sin(x)*cosh(x)/(sinh(x)*cos(x)) (even powers only).
Showing 1-2 of 2 results.