cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000965 Numerators of expansion of e.g.f. sinh(x) / sin(x) (even powers only).

Original entry on oeis.org

1, 2, 4, 104, 272, 3104, 79808, 631936, 1708288, 7045156352, 1413417032704, 6587672324096, 37378439704576, 66465881481076736, 80812831866241024, 17004045797823707643904, 55131841948562370265088, 189924798793194975920128, 1382061377731043599678963712
Offset: 0

Views

Author

Keywords

Examples

			sinh(x)/sin(x) = 1 + 1/3*x^2 + 1/18*x^4 + 13/1890*x^6 + 17/22680*x^8 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Rationals(), m);
    b:= Coefficients(R!(Laplace( Sinh(x)/Sin(x) )));
    [Numerator( b[2*n-1] ): n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jan 31 2022
    
  • Maple
    a:= n-> numer((2*n)!*coeff(series(sinh(x)/sin(x), x, 2*n+2), x, 2*n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 01 2022
  • Mathematica
    nn = 42; t = Range[0, nn]! CoefficientList[Series[Sinh[x]/Sin[x], {x, 0, nn}], x]; t = Numerator[t]; Take[t, {1, nn, 2}] (* T. D. Noe, Jun 21 2012 *)
  • PARI
    my(x='x+O('x^40)); select(x->(x!=0),apply(x->numerator(x), Vec(serlaplace(sinh(x)/sin(x))))) \\ Michel Marcus, Apr 16 2019
    
  • Sage
    [numerator( factorial(2*n)*( sinh(x)/sin(x) ).series(x, 2*n+3).list()[2*n] ) for n in (0..60)] # G. C. Greubel, Jan 31 2022

Formula

Numerator of ( (2n)! times coefficient of x^(2n) in sinh x / sin x ). - corrected by Sean A. Irvine, Apr 17 2019

A093485 a(n) = (27*n^2 + 9*n + 2)/2.

Original entry on oeis.org

1, 19, 64, 136, 235, 361, 514, 694, 901, 1135, 1396, 1684, 1999, 2341, 2710, 3106, 3529, 3979, 4456, 4960, 5491, 6049, 6634, 7246, 7885, 8551, 9244, 9964, 10711, 11485, 12286, 13114, 13969, 14851, 15760, 16696, 17659, 18649, 19666, 20710, 21781
Offset: 0

Views

Author

Michael Joseph Halm, May 13 2004

Keywords

Comments

Dodecahedral gnomon numbers: first differences of dodecahedral numbers.
The sequence is related to other gnomon numbers of polyhedra, known by other more familiar names: triangular numbers (tetrahedral gnomon numbers), hexagonal numbers (cubic gnomon numbers), square pyramidal numbers (octahedral gnomon numbers).
A124388 = first differences; second differences = 27. - Reinhard Zumkeller, Oct 30 2006
Sums of the triangular numbers from A000217(3*n-1) to A000217(3*n+1), with A000217(-1) = 0. - Bruno Berselli, Sep 04 2018

Examples

			a(1) = 19 because (1+1)*(3*(1+1)-1)*(3*(1+1)-2)/2-1*(3*1-1)*(3*1-2)/2 = 2*(6-1)*(6-2)/2 - 1*(3-1)*(3-2)/2 = 20-1 = 19.
		

Crossrefs

Programs

Formula

a(n) = (n+1)*(3*(n+1)-1)*(3*(n+1)-2)/2-n*(3*n-1)*(3*n-2)/2.
G.f.: (1 + 16*x + 10*x^2)/(1 - x)^3. - Colin Barker, Mar 28 2012

Extensions

New definition from Ralf Stephan, Dec 01 2004
Name corrected and initial term added by Arkadiusz Wesolowski, Aug 15 2011

A296628 Numerators of coefficients in expansion of e.g.f. tan(x)/tanh(x) (even powers only).

Original entry on oeis.org

1, 4, 16, 1408, 13568, 606208, 61878272, 1956380672, 21143027712, 348742016303104, 279852224852525056, 5217315235815227392, 118411884225053589504, 842233813811702133686272, 4096134057254358725165056, 3447514330976633343761929207808, 44711197753944482628093599547392
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 17 2017

Keywords

Comments

The values of the denominators are similar to A006656 up to n = 138, but differ after.

Examples

			tan(x)/tanh(x) = 1 + (4/3)*x^2/2! + (16/3)*x^4/4! + (1408/21)*x^6/6! + (13568/9)*x^8/8! + ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m);
    b:= Coefficients(R!(Laplace( Tan(x)/Tanh(x) )));
    [Numerator( b[2*n-1] ): n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jan 31 2022
    
  • Mathematica
    nmax = 16; Numerator[Table[(CoefficientList[Series[Tan[x]/Tanh[x], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]]
  • Sage
    [numerator( factorial(2*n)*( tan(x)/tanh(x) ).series(x, 2*n+3).list()[2*n] ) for n in (0..40)] # G. C. Greubel, Jan 31 2022

Formula

Numerators of coefficients in expansion of e.g.f. tanh(x)/tan(x) (even powers only, absolute values).
Numerators of coefficients in expansion of e.g.f. sin(x)*cosh(x)/(sinh(x)*cos(x)) (even powers only).
Showing 1-3 of 3 results.