cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A030266 Shifts left under COMPOSE transform with itself.

Original entry on oeis.org

0, 1, 1, 2, 6, 23, 104, 531, 2982, 18109, 117545, 808764, 5862253, 44553224, 353713232, 2924697019, 25124481690, 223768976093, 2062614190733, 19646231085928, 193102738376890, 1956191484175505, 20401540100814142, 218825717967033373, 2411606083999341827
Offset: 0

Views

Author

Keywords

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 104*x^6 + ...
A(A(x)) = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 531*x^6 + ...
		

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember;
          unapply(`if`(n=0, x,
          A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x)
        end:
    a:= n-> coeff(A(n)(x),x,n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 24 2012
  • Mathematica
    A[0] = Identity; A[n_] := A[n] = Function[x, Evaluate[A[n-1][x]+Coefficient[A[n-1][A[n-1][x]], x, n]*x^(n+1)]]; a[n_] := Coefficient[A[n][x], x, n]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    CoefficientList[Nest[x + x (# /. x -> #) &, O[x], 30], x] (* Vladimir Reshetnikov, Aug 08 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Mar 10 2007
    
  • PARI
    {a(n)=local(A=sum(i=1,n-1,a(i)*x^i)+x*O(x^n));if(n==0,0,polcoeff((1+A)^n/n,n-1))} \\ Paul D. Hanna, Nov 18 2008
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+m,k)/(n+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    {a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
    for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(2*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 15 2010

Formula

G.f. A(x) satisfies the functional equation: A(x)-x = x*A(A(x)). - Paul D. Hanna, Aug 04 2002
G.f.: A(x/(1+A(x))) = x. - Paul D. Hanna, Dec 04 2003
Suppose the functions A=A(x), B=B(x), C=C(x), etc., satisfy: A = 1 + xAB, B = 1 + xABC, C = 1 + xABCD, D = 1 + xABCDE, etc., then B(x)=A(x*A(x)), C(x)=B(x*A(x)), D(x)=C(x*A(x)), etc., where A(x) = 1 + x*A(x)*A(x*A(x)) and x*A(x) is the g.f. of this sequence (see table A128325). - Paul D. Hanna, Mar 10 2007
G.f. A(x) = x*F(x,1) where F(x,n) satisfies: F(x,n) = F(x,n-1)*(1 + x*F(x,n+1)) for n>0 with F(x,0)=1. - Paul D. Hanna, Apr 16 2007
a(n) = [x^(n-1)] [1 + A(x)]^n/n for n>=1 with a(0)=0; i.e., a(n) equals the coefficient of x^(n-1) in [1+A(x)]^n/n for n >= 1. - Paul D. Hanna, Nov 18 2008
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m) * a(n-k,k).
(End)
G.f. satisfies:
* A(x) = x*exp( Sum_{m>=0} {d^m/dx^m A(x)^(m+1)/x} * x^(m+1)/(m+1)! );
* A(x) = x*exp( Sum_{m>=1} [Sum_{k>=0} C(m+k-1,k)*{[y^k] A(y)^m/y^m}*x^k]*x^m/m );
which are equivalent. - Paul D. Hanna, Dec 15 2010
The g.f. satisfies:
log(A(x)/x) = A(x) + {d/dx A(x)^2/x}*x^2/2! + {d^2/dx^2 A(x)^3/x}*x^3/3! + {d^3/dx^3 A(x)^4/x}*x^4/4! + ... - Paul D. Hanna, Dec 15 2010

A144002 E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^2 dx ).

Original entry on oeis.org

1, 1, 2, 10, 88, 1152, 20448, 464608, 12998176, 435443328, 17106187520, 775347933312, 40025403691136, 2328514989726720, 151324140857050624, 10904257049278844416, 865717992565002800640, 75309304802558209263616, 7143418423952431605493760, 735668180680897524348745728
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2008

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 10*x^3/3! + 88*x^4/4! + 1152*x^5/5! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^2))); n!*polcoef(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies: A'(x) = A(A(x) - 1)^2. - Paul D. Hanna, Nov 25 2014 [corrected by Paul D. Hanna, Sep 07 2024]

A035049 E.g.f. satisfies A(x) = x*(1+A(A(x))), A(0)=0.

Original entry on oeis.org

1, 2, 12, 144, 2760, 74880, 2676240, 120234240, 6571393920, 426547296000, 32283270835200, 2808028566604800, 277433852555059200, 30836115140589158400, 3824551325912308992000, 525674251444773150720000, 79591811594194480508928000, 13205626859810397006618624000
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; `if`(n=0, 0, (T-> unapply(
          convert(series(x*(1+T(T(x))), x, n+1), polynom), x))(A(n-1)))
        end:
    a:= n-> coeff(A(n)(x), x, n)*n!:
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 23 2008
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(k*
          a(j)*b(n-j, k-1)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> `if`(n=0, 1, b(n-1, n)):
    seq(a(n), n=1..20);  # Alois P. Heinz, Aug 21 2019
  • Mathematica
    T[n_, m_] := T[n, m] = If[n == m, 1, m/n*Sum[Sum[T[n-m, i]*Binomial[i-1, k-1]*(-1)^i, {i, k, n-m}]*(-1)^k*Binomial[n+k-1, n-1], {k, 1, n-m}]]; Table[n!*T[n, 1], {n, 1, 16}] (* Jean-François Alcover, Feb 12 2014, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if n=m then 1 else m/n*sum(sum(T(n-m,i)*binomial(i-1,k-1)*(-1)^i,i,k,n-m)*(-1)^k*binomial(n+k-1,n-1),k,1,n-m); makelist(n!*T(n,1),n,1,10); /* Vladimir Kruchinin, May 06 2012 */

Formula

a(n) = n!*T(n,1), T(n,m) = m/n*sum(k=1..n-m, sum(i=k..n-m, T(n-m,i) * C(i-1,k-1)*(-1)^i)*(-1)^k*C(n+k-1,n-1)), n>m, T(n,n)=1. - Vladimir Kruchinin, May 06 2012

Extensions

More terms from Alois P. Heinz, Aug 23 2008

A144003 E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^3 dx ).

Original entry on oeis.org

1, 1, 3, 24, 339, 7101, 200961, 7256277, 321662502, 17029233774, 1054682936433, 75199620036177, 6094256204678922, 555527437385512095, 56468189426338157580, 6353824422205136494044, 786458781488123265873519
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2008

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 24*x^3/3! + 339*x^4/4! + 7101*x^5/5! + 200961*x^6/6! + 7256277*x^7/7! + 321662502*x^8/8! + ...
where A(x) = 1 + Series_Reversion( Integral 1/A(x)^3 dx ).
RELATED SERIES.
Integral 1/A(x)^3 dx = x - 3*x^2/2! + 3*x^3/3! - 24*x^4/4! - 261*x^5/5! - 6543*x^6/6! - 202671*x^7/7! - 7911351*x^8/8! + ...
where Integral 1/A(x)^3 dx = Series_Reversion(A(x) - 1).
A(A(x) - 1) = 1 + x + 6*x^2/2! + 75*x^3/3! + 1479*x^4/4! + 40617*x^5/5! + 1447785*x^6/6! + 64027656*x^7/7! + 3404869020*x^8/8! + ...
A(A(x) - 1)^3 = 1 + 3*x + 24*x^2/2! + 339*x^3/3! + 7101*x^4/4! + ...
where A(A(x) - 1)^3 = d/dx A(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^3))); n!*polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies: A'(x) = A(A(x) - 1)^3. - Paul D. Hanna, Aug 26 2024

A144004 E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^4 dx ).

Original entry on oeis.org

1, 1, 4, 44, 856, 24664, 958592, 47463936, 2881313024, 208638075392, 17654019768320, 1717961286944768, 189836122499649536, 23574107397852049408, 3261667682403085852672, 499151625979680748978176
Offset: 0

Views

Author

Paul D. Hanna, Sep 07 2008

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 44*x^3/3! + 856*x^4/4! + 24664*x^5/5! + 958592*x^6/6! + 47463936*x^7/7! + 2881313024*x^8/8! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^4))); n!*polcoef(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f. A(x) satisfies: A'(x) = A(A(x) - 1)^4. - Paul D. Hanna, Sep 07 2024

A193100 E.g.f. A(x) satisfies: A’(x) = x + A(A(x)), where A(x) = Sum_{n>=0} a(n)*x^(3*n+2)/(3*n+2)!.

Original entry on oeis.org

1, 3, 63, 6804, 1990170, 1145276496, 1172421884088, 1981846981092069, 5166650461467914874, 19710026486212156729362, 105613632141369240315500892, 768455476842781911036557334267, 7380326961188107570497477933701847
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2011

Keywords

Examples

			E.g.f.: A(x) = x^2/2! + 3*x^5/5! + 63*x^8/8! + 6804*x^11/11! + 1990170*x^14/14! + 1145276496*x^17/17! + 1172421884088*x^20/20! +...
where A'(x) = x + 3*x^4/4! + 63*x^7/7! + 6804*x^10/10! +...
and A(A(x)) = 3*x^4/4! + 63*x^7/7! + 6804*x^10/10! + 1990170*x^13/13! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x^2/2);for(i=1,n,A=intformal(x+subst(A,x,A+O(x^(3*n+3)))));(3*n+2)!*polcoeff(A,3*n+2)}

A193098 E.g.f. A(x) satisfies: A'(x) = 1 + A(A(A(x))).

Original entry on oeis.org

1, 1, 3, 18, 171, 2283, 39942, 874944, 23243829, 731486637, 26782956144, 1124838704976, 53567894139165, 2865318598843281, 170774893724336223, 11264050942430761881, 817374450539598433587, 64917115563124199691834
Offset: 1

Views

Author

Paul D. Hanna, Jul 15 2011

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 18*x^4/4! + 171*x^5/5! + 2283*x^6/6! +...
where the derivative of the e.g.f. begins:
A'(x) = 1 + x + 3*x^2/2! + 18*x^3/3! + 171*x^4/4! + 2283*x^5/5! +...
Related expansions.
A(A(x)) = x + 2*x^2/2! + 9*x^3/3! + 69*x^4/4! + 777*x^5/5! + 11802*x^6/6! + 229047*x^7/7! + 5472600*x^8/8! +...
A(A(A(x))) = x + 3*x^2/2! + 18*x^3/3! + 171*x^4/4! + 2283*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x); for(i=1, n, A=intformal(1+subst(A, x, subst(A, x, A+O(x^(n+1)))))); n!*polcoeff(A, n)}

A193099 E.g.f. A(x) satisfies: A'(x) = 1 + A(A(A(A(x)))).

Original entry on oeis.org

1, 1, 4, 34, 466, 9044, 230827, 7388781, 287044354, 13212057907, 707417718215, 43431362340153, 3022050938855344, 236053437141340206, 20532456001485751429, 1975258248906891145913, 208928124926501980596761, 24172548454436633069025270
Offset: 1

Views

Author

Paul D. Hanna, Jul 15 2011

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 34*x^4/4! + 466*x^5/5! + 9044*x^6/6! +...
where the derivative of the e.g.f. begins:
A'(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 466*x^4/4! + 9044*x^5/5! +...
Related expansions.
A(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 111*x^4/4! + 1702*x^5/5! + 35854*x^6/6! +...
A(A(A(x))) = x + 3*x^2/2! + 21*x^3/3! + 249*x^4/4! + 4303*x^5/5! + 99650*x^6/6! +...
A(A(A(A(x)))) = x + 4*x^2/2! + 34*x^3/3! + 466*x^4/4! + 9044*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=x); for(i=1, n, A=intformal(1+subst(A, x, subst(A, x, subst(A, x, A+O(x^(n+1))))))); n!*polcoeff(A, n)}

A231868 E.g.f. satisfies: A'(x) = A(x*A(x)) with A(0)=1.

Original entry on oeis.org

1, 1, 1, 3, 12, 84, 774, 9468, 146052, 2764980, 62759736, 1678881096, 52185496464, 1862666455104, 75581146734912, 3456542059903296, 176834245093202736, 10053690187338014256, 631507398302281340736, 43596564604477924096512, 3292312674449093132923488
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 12*x^4/4! + 84*x^5/5! + 774*x^6/6! + ...
such that
A(x*A(x)) = A'(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 84*x^4/4! + 774*x^5/5! + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+intformal(subst(A,x,x*A +x*O(x^n))));n!*polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

E.g.f. satisfies: A(x) = 1 + Integral( A(x*A(x)) dx).
Showing 1-9 of 9 results.