A030266
Shifts left under COMPOSE transform with itself.
Original entry on oeis.org
0, 1, 1, 2, 6, 23, 104, 531, 2982, 18109, 117545, 808764, 5862253, 44553224, 353713232, 2924697019, 25124481690, 223768976093, 2062614190733, 19646231085928, 193102738376890, 1956191484175505, 20401540100814142, 218825717967033373, 2411606083999341827
Offset: 0
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 23*x^5 + 104*x^6 + ...
A(A(x)) = x + 2*x^2 + 6*x^3 + 23*x^4 + 104*x^5 + 531*x^6 + ...
-
A:= proc(n) option remember;
unapply(`if`(n=0, x,
A(n-1)(x)+coeff(A(n-1)(A(n-1)(x)), x, n) *x^(n+1)), x)
end:
a:= n-> coeff(A(n)(x),x,n):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 24 2012
-
A[0] = Identity; A[n_] := A[n] = Function[x, Evaluate[A[n-1][x]+Coefficient[A[n-1][A[n-1][x]], x, n]*x^(n+1)]]; a[n_] := Coefficient[A[n][x], x, n]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
CoefficientList[Nest[x + x (# /. x -> #) &, O[x], 30], x] (* Vladimir Reshetnikov, Aug 08 2019 *)
-
{a(n)=local(A=1+x);for(i=0,n,A=1+x*A*subst(A,x,x*A+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Mar 10 2007
-
{a(n)=local(A=sum(i=1,n-1,a(i)*x^i)+x*O(x^n));if(n==0,0,polcoeff((1+A)^n/n,n-1))} \\ Paul D. Hanna, Nov 18 2008
-
{a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+m,k)/(n+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
-
{a(n)=local(A=1+sum(i=1,n-1,a(i)*x^i+x*O(x^n)));
for(i=1,n,A=exp(sum(m=1,n,sum(k=0,n-m,binomial(m+k-1,k)*polcoeff(A^(2*m),k)*x^k)*x^m/m)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 15 2010
A144002
E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^2 dx ).
Original entry on oeis.org
1, 1, 2, 10, 88, 1152, 20448, 464608, 12998176, 435443328, 17106187520, 775347933312, 40025403691136, 2328514989726720, 151324140857050624, 10904257049278844416, 865717992565002800640, 75309304802558209263616, 7143418423952431605493760, 735668180680897524348745728
Offset: 0
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 10*x^3/3! + 88*x^4/4! + 1152*x^5/5! + ...
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^2))); n!*polcoef(A,n)}
for(n=0,20,print1(a(n),", "))
A035049
E.g.f. satisfies A(x) = x*(1+A(A(x))), A(0)=0.
Original entry on oeis.org
1, 2, 12, 144, 2760, 74880, 2676240, 120234240, 6571393920, 426547296000, 32283270835200, 2808028566604800, 277433852555059200, 30836115140589158400, 3824551325912308992000, 525674251444773150720000, 79591811594194480508928000, 13205626859810397006618624000
Offset: 1
-
A:= proc(n) option remember; `if`(n=0, 0, (T-> unapply(
convert(series(x*(1+T(T(x))), x, n+1), polynom), x))(A(n-1)))
end:
a:= n-> coeff(A(n)(x), x, n)*n!:
seq(a(n), n=1..20); # Alois P. Heinz, Aug 23 2008
# second Maple program:
b:= proc(n, k) option remember; `if`(n=0, 1, add(k*
a(j)*b(n-j, k-1)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> `if`(n=0, 1, b(n-1, n)):
seq(a(n), n=1..20); # Alois P. Heinz, Aug 21 2019
-
T[n_, m_] := T[n, m] = If[n == m, 1, m/n*Sum[Sum[T[n-m, i]*Binomial[i-1, k-1]*(-1)^i, {i, k, n-m}]*(-1)^k*Binomial[n+k-1, n-1], {k, 1, n-m}]]; Table[n!*T[n, 1], {n, 1, 16}] (* Jean-François Alcover, Feb 12 2014, after Vladimir Kruchinin *)
-
T(n,m):=if n=m then 1 else m/n*sum(sum(T(n-m,i)*binomial(i-1,k-1)*(-1)^i,i,k,n-m)*(-1)^k*binomial(n+k-1,n-1),k,1,n-m); makelist(n!*T(n,1),n,1,10); /* Vladimir Kruchinin, May 06 2012 */
A144003
E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^3 dx ).
Original entry on oeis.org
1, 1, 3, 24, 339, 7101, 200961, 7256277, 321662502, 17029233774, 1054682936433, 75199620036177, 6094256204678922, 555527437385512095, 56468189426338157580, 6353824422205136494044, 786458781488123265873519
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 24*x^3/3! + 339*x^4/4! + 7101*x^5/5! + 200961*x^6/6! + 7256277*x^7/7! + 321662502*x^8/8! + ...
where A(x) = 1 + Series_Reversion( Integral 1/A(x)^3 dx ).
RELATED SERIES.
Integral 1/A(x)^3 dx = x - 3*x^2/2! + 3*x^3/3! - 24*x^4/4! - 261*x^5/5! - 6543*x^6/6! - 202671*x^7/7! - 7911351*x^8/8! + ...
where Integral 1/A(x)^3 dx = Series_Reversion(A(x) - 1).
A(A(x) - 1) = 1 + x + 6*x^2/2! + 75*x^3/3! + 1479*x^4/4! + 40617*x^5/5! + 1447785*x^6/6! + 64027656*x^7/7! + 3404869020*x^8/8! + ...
A(A(x) - 1)^3 = 1 + 3*x + 24*x^2/2! + 339*x^3/3! + 7101*x^4/4! + ...
where A(A(x) - 1)^3 = d/dx A(x).
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^3))); n!*polcoeff(A,n)}
for(n=0,20,print1(a(n),", "))
A144004
E.g.f. A(x) satisfies: A(x) = 1 + Series_Reversion( Integral 1/A(x)^4 dx ).
Original entry on oeis.org
1, 1, 4, 44, 856, 24664, 958592, 47463936, 2881313024, 208638075392, 17654019768320, 1717961286944768, 189836122499649536, 23574107397852049408, 3261667682403085852672, 499151625979680748978176
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 44*x^3/3! + 856*x^4/4! + 24664*x^5/5! + 958592*x^6/6! + 47463936*x^7/7! + 2881313024*x^8/8! + ...
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=0,n, A = 1 + serreverse(intformal(1/A^4))); n!*polcoef(A,n)}
for(n=0,20,print1(a(n),", "))
A193100
E.g.f. A(x) satisfies: A’(x) = x + A(A(x)), where A(x) = Sum_{n>=0} a(n)*x^(3*n+2)/(3*n+2)!.
Original entry on oeis.org
1, 3, 63, 6804, 1990170, 1145276496, 1172421884088, 1981846981092069, 5166650461467914874, 19710026486212156729362, 105613632141369240315500892, 768455476842781911036557334267, 7380326961188107570497477933701847
Offset: 0
E.g.f.: A(x) = x^2/2! + 3*x^5/5! + 63*x^8/8! + 6804*x^11/11! + 1990170*x^14/14! + 1145276496*x^17/17! + 1172421884088*x^20/20! +...
where A'(x) = x + 3*x^4/4! + 63*x^7/7! + 6804*x^10/10! +...
and A(A(x)) = 3*x^4/4! + 63*x^7/7! + 6804*x^10/10! + 1990170*x^13/13! +...
-
{a(n)=local(A=x^2/2);for(i=1,n,A=intformal(x+subst(A,x,A+O(x^(3*n+3)))));(3*n+2)!*polcoeff(A,3*n+2)}
A193098
E.g.f. A(x) satisfies: A'(x) = 1 + A(A(A(x))).
Original entry on oeis.org
1, 1, 3, 18, 171, 2283, 39942, 874944, 23243829, 731486637, 26782956144, 1124838704976, 53567894139165, 2865318598843281, 170774893724336223, 11264050942430761881, 817374450539598433587, 64917115563124199691834
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 18*x^4/4! + 171*x^5/5! + 2283*x^6/6! +...
where the derivative of the e.g.f. begins:
A'(x) = 1 + x + 3*x^2/2! + 18*x^3/3! + 171*x^4/4! + 2283*x^5/5! +...
Related expansions.
A(A(x)) = x + 2*x^2/2! + 9*x^3/3! + 69*x^4/4! + 777*x^5/5! + 11802*x^6/6! + 229047*x^7/7! + 5472600*x^8/8! +...
A(A(A(x))) = x + 3*x^2/2! + 18*x^3/3! + 171*x^4/4! + 2283*x^5/5! +...
-
{a(n)=local(A=x); for(i=1, n, A=intformal(1+subst(A, x, subst(A, x, A+O(x^(n+1)))))); n!*polcoeff(A, n)}
A193099
E.g.f. A(x) satisfies: A'(x) = 1 + A(A(A(A(x)))).
Original entry on oeis.org
1, 1, 4, 34, 466, 9044, 230827, 7388781, 287044354, 13212057907, 707417718215, 43431362340153, 3022050938855344, 236053437141340206, 20532456001485751429, 1975258248906891145913, 208928124926501980596761, 24172548454436633069025270
Offset: 1
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 34*x^4/4! + 466*x^5/5! + 9044*x^6/6! +...
where the derivative of the e.g.f. begins:
A'(x) = 1 + x + 4*x^2/2! + 34*x^3/3! + 466*x^4/4! + 9044*x^5/5! +...
Related expansions.
A(A(x)) = x + 2*x^2/2! + 11*x^3/3! + 111*x^4/4! + 1702*x^5/5! + 35854*x^6/6! +...
A(A(A(x))) = x + 3*x^2/2! + 21*x^3/3! + 249*x^4/4! + 4303*x^5/5! + 99650*x^6/6! +...
A(A(A(A(x)))) = x + 4*x^2/2! + 34*x^3/3! + 466*x^4/4! + 9044*x^5/5! +...
-
{a(n)=local(A=x); for(i=1, n, A=intformal(1+subst(A, x, subst(A, x, subst(A, x, A+O(x^(n+1))))))); n!*polcoeff(A, n)}
A231868
E.g.f. satisfies: A'(x) = A(x*A(x)) with A(0)=1.
Original entry on oeis.org
1, 1, 1, 3, 12, 84, 774, 9468, 146052, 2764980, 62759736, 1678881096, 52185496464, 1862666455104, 75581146734912, 3456542059903296, 176834245093202736, 10053690187338014256, 631507398302281340736, 43596564604477924096512, 3292312674449093132923488
Offset: 0
E.g.f.: A(x) = 1 + x + x^2/2! + 3*x^3/3! + 12*x^4/4! + 84*x^5/5! + 774*x^6/6! + ...
such that
A(x*A(x)) = A'(x) = 1 + x + 3*x^2/2! + 12*x^3/3! + 84*x^4/4! + 774*x^5/5! + ...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+intformal(subst(A,x,x*A +x*O(x^n))));n!*polcoeff(A,n)}
for(n=0,25,print1(a(n),", "))
Showing 1-9 of 9 results.