cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A110083 a(n+1) = Sum_{k=0..n} (n!/k!)*binomial(n,k)*a(k).

Original entry on oeis.org

1, 1, 2, 8, 50, 442, 5212, 78664, 1472756, 33378740, 898227944, 28253387104, 1025373023848, 42467845178632, 1988513519453360, 104413376937507488, 6104596110052561808, 394921638012548722576, 28112685278602155590944, 2191142414957886078590080
Offset: 0

Views

Author

Vladeta Jovovic, Sep 04 2005

Keywords

Crossrefs

Cf. A001063.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-i)*binomial(n-1, i-1)^2*(i-1)!, i=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 13 2019
  • Mathematica
    nmax=20; b = ConstantArray[0,nmax+2]; b[[1]]=1; Do[b[[n+2]] = Sum[n!/k!*Binomial[n,k]*b[[k+1]],{k,0,n}],{n,0,nmax}]; b (* Vaclav Kotesovec, Mar 02 2014 *)

Formula

Conjecture: a(n) = R(n,0) where R(n,k) = R(n-1,n-1) + n * Sum_{j=0..k-1} R(n-1,j) for 0 <= k <= n with R(0,0) = 1. - Mikhail Kurkov, Jul 18 2025

A193160 E.g.f. A(x) satisfies: A(x/(1-x)) = x*A'(x).

Original entry on oeis.org

1, 2, 9, 68, 760, 11664, 233828, 5905696, 182846592, 6792372480, 297550188672, 15153482847744, 886517886778368, 58975120009537536, 4422337095720648960, 370957479138591903744, 34576037926690499493888, 3559813114275891217760256
Offset: 1

Views

Author

Paul D. Hanna, Jul 16 2011

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 68*x^4/4! + 760*x^5/5! +...
Related expansions:
A(x/(1-x)) = x + 4*x^2/2! + 27*x^3/3! + 272*x^4/4! + 3800*x^5/5! +...
x*A'(x) = x + 4*x^2/2! + 27*x^3/3! + 272*x^4/4! + 3800*x^5/5! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1],F=x);for(i=1,n,A=concat(A,0);F=x*Ser(A);A[#A]=Vec(subst(F,x,x/(1-x)))[#A]/(#A-1));if(n<1,0,n!*A[n])}
    
  • PARI
    {a(n)=if(n<1,0,if(n==1,1,n!/(n-1)*sum(k=1,n-1,binomial(n-1,k-1)*a(k)/k!)))}

Formula

a(n) = n*(n-2)!* Sum_{k=1..n-1} C(n-1,k-1)* a(k)/k! for n>1 with a(1)=1.
a(n) = n*A193161(n-1).

A307355 E.g.f. A(x) satisfies: d/dx A(x) = 1 + A(x/(1 + x)).

Original entry on oeis.org

1, 1, -1, -1, 23, -197, 1093, 5377, -374863, 9934889, -195976201, 2134159519, 67270069831, -6730482201869, 365726633654957, -15494292929032063, 458469986808144737, 2828723973314497873, -2067360599320208561297, 238687490584532161293631, -20425982116564721266720009
Offset: 1

Views

Author

Ilya Gutkovskiy, May 04 2019

Keywords

Crossrefs

Cf. A001063.

Programs

  • Mathematica
    terms = 21; A[] = 0; Do[A[x] = Normal[Integrate[1 + A[x/(1 + x) + O[x]^(terms + 1)], x] + O[x]^(terms + 1)], terms]; Rest[CoefficientList[A[x], x] Range[0, terms]!]
    a[n_] := a[n] = Sum[(-1)^(n - k - 1) Binomial[n - 2, k - 1] a[k] (n - 1)!/k!, {k, 1, n - 1}]; a[1] = 1; Table[a[n], {n, 1, 21}]

Formula

Recurrence: a(n+1) = Sum_{k=1..n} (-1)^(n-k)*binomial(n-1,k-1)*a(k)*n!/k!.

A331660 E.g.f. A(x) satisfies: d/dx A(x) = 1 + (1/(1 - x)) * A(x/(1 - x)).

Original entry on oeis.org

1, 1, 5, 32, 280, 3280, 49480, 927560, 21037640, 566134160, 17803754560, 646052181520, 26757321804880, 1252934215973600, 65791336312915520, 3846554938702140320, 248841434876849499040, 17713758333248102781760, 1380631354206969100115200
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 0; Do[A[x] = Normal[Integrate[1 + 1/(1 - x) A[x/(1 - x) + O[x]^(terms + 1)], x] + O[x]^(terms + 1)], terms]; CoefficientList[A[x], x] Range[0, terms]! // Rest
    a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k]^2 k! a[n - k - 1], {k, 0, n - 2}]; Table[a[n], {n, 1, 20}]

Formula

a(1) = 1; a(n+1) = Sum_{k=0..n-1} binomial(n,k)^2 * k! * a(n-k).
Showing 1-4 of 4 results.