A001122 Primes with primitive root 2.
3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797
Offset: 1
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864.
- E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I; see p. 221.
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 169.
- M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 56.
- Lehmer, D. H. and Lehmer, Emma; Heuristics, anyone? in Studies in mathematical analysis and related topics, pp. 202-210, Stanford Univ. Press, Stanford, Calif., 1962.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 20.
- D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 81.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 876-878.
- Richard Bartels, Generalized Loewy Length of Cohen-Macaulay Local and Graded Rings, arXiv:2308.14932 [math.AC], 2023. See p. 10.
- J. Conde, M. Miller, J. M. Miret, and K. Saurav, On the Nonexistence of Almost Moore Digraphs of Degree Four and Five, Mathematics in Computer Science, 9(2) (2015), 145-149.
- Jonathan Detchart and Jérôme Lacan, Improving the coding speed of erasure codes with polynomial ring transforms, arXiv:1709.00178 [cs.IT], 2017.
- K. Dilcher and L. Ericksen, Reducibility and irreducibility of Stern (0, 1)-polynomials, Communications in Mathematics, 22 (2014), 77-102.
- Gabriele Fici and Estéban Gabory, Generalized De Bruijn Words, Invertible Necklaces, and the Burrows-Wheeler Transform, arXiv:2502.12844 [math.CO], 2025. See p. 12.
- R. Gupta and M. R. Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127-230.
- C. Hooley, On Artin's conjecture, J. Reine Angewandte Math., 225 (1967), 209-220.
- Florian Ingels, Anaïs Denis, and Bastien Cazaux, Decomposing Words for Enhanced Compression: Exploring the Number of Runs in the Extended Burrows-Wheeler Transform, arXiv:2506.04926 [cs.DS], 2025. See p. 15.
- Robert Jackson, Dmitriy Rumynin and Oleg V. Zaboronski, An approach to RAID-6 based on cyclic groups, Applied Mathematics & Information Sciences, 5(2) (2011), 148-170.
- Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv:1608.00862 [math.GM], 2016.
- Sihem Mesnager and Jean-Pierre Flori, A note on hyper-bent functions via Dillon-like exponents, IACR, Report 2012/033, 2012.
- F. Pillichshammer, Bounds for the quality parameter of digital shift nets over Z_2, Finite Fields Applic., 8 (2002), 444-454.
- Pieter Moree, Artin's primitive root conjecture-a survey, arXiv:math/0412262 [math.NT], 2004-2012.
- Paul Pollack, Bounded gaps between primes with a given primitive root, arXiv:1404.4007 [math.NT], 2014.
- Vladimir Shevelev, On the Newman sum over multiples of a prime with a primitive or semiprimitive root 2, arXiv:0710.1354 [math.NT], 2007.
- Stephan Tornier, Groups Acting on Trees With Prescribed Local Action, arXiv:2002.09876 [math.GR], 2020.
- Qifu Tyler Sun, Hanqi Tang, Zongpeng Li, Xiaolong Yang, and Keping Long, Circular-shift Linear Network Codes with Arbitrary Odd Block Lengths, arXiv:1806.04635 [cs.IT], 2018.
- Eric Weisstein's World of Mathematics, Artin's constant.
- Wikipedia, Artin's conjecture on primitive roots.
- Index entries for sequences related to Artin's conjecture
- Index entries for primes by primitive root
Crossrefs
Programs
-
Mathematica
Select[ Prime@Range@200, PrimitiveRoot@# == 2 &] (* Robert G. Wilson v, May 11 2001 *) pr = 2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == # - 1 &] (* N. J. A. Sloane, Jun 01 2010 *)
-
PARI
forprime(p=3, 1000, if(znorder(Mod(2, p))==(p-1), print1(p,", "))); \\ [corrected by Michel Marcus, Oct 08 2014]
-
Python
from itertools import islice from sympy import nextprime, is_primitive_root def A001122_gen(): # generator of terms p = 2 while (p:=nextprime(p)): if is_primitive_root(2,p): yield p A001122_list = list(islice(A001122_gen(),30)) # Chai Wah Wu, Feb 13 2023
Formula
Delta(a(n),2^a(n)*x) = a(n)*Delta(a(n),2*x), where Delta(k,x) is the difference between numbers of evil(A001969) and odious(A000069) integers divisible by k in interval [0,x). - Vladimir Shevelev, Aug 30 2013
For n >= 2, a(n) = 1 + 2*A163782(n-1). - Antti Karttunen, Oct 07 2017
Comments