A001129 Iccanobif numbers: reverse digits of two previous terms and add.
0, 1, 1, 2, 3, 5, 8, 13, 39, 124, 514, 836, 1053, 4139, 12815, 61135, 104937, 792517, 1454698, 9679838, 17354310, 9735140, 1760750, 986050, 621360, 113815, 581437, 1252496, 7676706, 13019288, 94367798, 178067380, 173537220, 106496242, 265429972, 522619163
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000 (terms 0..300 from T. D. Noe)
Programs
-
Haskell
a001129 n = a001129_list !! n a001129_list = 0 : 1 : zipWith (+) iccanobifs (tail iccanobifs) where iccanobifs = map a004086 a001129_list -- Reinhard Zumkeller, Jan 01 2012
-
Magma
a:=[0,1];[n le 2 select a[n] else Seqint(Reverse(Intseq(Self(n-1)))) + Seqint(Reverse(Intseq(Self(n-2)))):n in [1..35]]; // Marius A. Burtea, Oct 23 2019
-
Maple
R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n): a:= proc(n) option remember; `if`(n<2, n, R(a(n-1)) +R(a(n-2))) end: seq(a(n), n=0..50); # Alois P. Heinz, Jun 18 2014
-
Mathematica
Clear[ BIF ]; BIF[ 0 ]=0; BIF[ 1 ]=1; BIF[ n_Integer ] := BIF[ n ]=Plus@@Map[ Plus@@(#*Array[ 10^#&, Length[ # ], 0 ])&, Map[ IntegerDigits, {BIF[ n-1 ], BIF[ n-2 ]} ] ]; Array[ BIF, 40, 0 ] nxt[{a_,b_}]:={b,Total[FromDigits/@Reverse/@IntegerDigits[ {a,b}]]}; Transpose[NestList[nxt,{0,1},40]][[1]] (* Harvey P. Dale, Jun 22 2011 *) nxt[{a_,b_}]:={b,Total[IntegerReverse[{a,b}]]}; NestList[nxt,{0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 07 2019 *)
-
PARI
A001129(n,a=0,b=1)={ n || return; while( n-->0, b=A004086(a)+A004086(a=b)); b }
-
Python
A001129_list, r1, r2 = [0,1], 1, 0 for _ in range(10**2): l, r2 = r1+r2, r1 r1 = int(str(l)[::-1]) A001129_list.append(l) # Chai Wah Wu, Jan 03 2015