cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 35 results. Next

A101759 Iccanobif prime indices: Indices of prime numbers in A001129.

Original entry on oeis.org

3, 4, 5, 7, 13, 39, 51, 65, 254, 315, 361, 423, 1109, 1497, 1701, 3711, 3814, 3847
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

No more terms through 10^4.

Crossrefs

Programs

A101763 Iccanobif semiprime indices: Indices of semiprime numbers in A001129.

Original entry on oeis.org

8, 10, 15, 17, 35, 37, 47, 53, 62, 66, 74, 79, 110, 127, 146, 214, 231, 241, 242, 245, 250, 277, 293, 302, 343, 485, 525, 550, 599, 638, 687, 733, 805, 814
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 881, 946, 954, 1086, 1753, and 1771. It might or might not include 838, 849, 1073, 1667, 1741, 1870, 2155, and 2478, but the required factoring proved rather difficult. There are no further terms below 2478. - Lucas A. Brown, Nov 19 2022

Crossrefs

Extensions

Missing 302 inserted and 525 added by Sean A. Irvine, Apr 29 2022
a(28)-a(34) from Lucas A. Brown, Nov 21 2022

A172524 Partial sums of Iccanobif numbers A001129.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 20, 33, 72, 196, 710, 1546, 2599, 6738, 19553, 80688, 185625, 978142, 2432840, 12112678, 29466988, 39202128, 40962878, 41948928, 42570288, 42684103, 43265540, 44518036, 52194742, 65214030, 159581828, 337649208
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2010

Keywords

Comments

The only primes in this sequence are: 2, 7 and 19553. The squares in this sequence begin: 0, 1, 4, 196.

Examples

			a(14) = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 + 39 + 124 + 514 + 836 + 1053 + 4139 + 12815 = 19553 is prime. a(31) = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 + 39 + 124 + 514 + 836 + 1053 + 4139 + 12815 + 61135 + 104937 + 792517 + 1454698 + 9679838 + 17354310 + 9735140 + 1760750 + 986050 + 621360 + 113815 + 581437 + 1252496 + 7676706 + 13019288 + 94367798 + 178067380.
		

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_}]:={b,Total[FromDigits/@Reverse/@IntegerDigits[{a,b}]]};Accumulate[ Transpose[NestList[nxt,{0,1},40]][[1]]] (* Harvey P. Dale, Apr 04 2015 *)

Formula

a(n) = SUM[i=0..n] A001129(i) = SUM[i=0..n] {a(0) = 0, a(1) = 1, a(i+2) = R(a(i)) + R(a(i+1))} = SUM[i=0..n] A001129(i) = SUM[i=1..n] {a(0) = 0, a(1) = 1, a(i+2) = A004086(a(i)) + A004086(a(i+1))}.

A173654 Primes in A001129 (= Iccanobif numbers).

Original entry on oeis.org

2, 3, 5, 13, 4139, 9291169663, 40903307711993, 11203575507020612767, 117931192833682420978785454924465287516044205584738321794932303399537906411276617, 7737619036672503610877049119781775747407075619250176633948790610185824044984615653215342833359
Offset: 1

Views

Author

M. F. Hasler, Jan 14 2011

Keywords

Crossrefs

Programs

  • PARI
    a=0; b=1; for(n=2,999, ispseudoprime(b=A004086(a)+A004086(a=b))& print1(b", "))

Formula

a(n)=A001129(A101759(n)).

A014258 Iccanobif numbers: add previous two terms and reverse the sum.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 31, 93, 421, 415, 638, 3501, 9314, 51821, 53116, 739401, 715297, 8964541, 8389769, 1345371, 415379, 570671, 50689, 63126, 518311, 734185, 6942521, 6076767, 88291031, 89776349, 83760871, 22735371, 242694601, 279924562, 361916225, 787048146
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(transforms); f:=proc(n) option remember; if n <= 1 then n else digrev(f(n-1)+f(n-2)); fi; end; [seq(f(n),n=0..50)];
  • Mathematica
    Clear[ BiF ]; BiF[ 0 ]=0; BiF[ 1 ]=1; BiF[ n_Integer ] := BiF[ n ]=Plus@@(IntegerDigits[ BiF[ n-2 ]+BiF[ n-1 ], 10 ]//(#*Array[ 10^#&, Length[ # ], 0 ])&); Array[ BiF, 40, 0 ]
    nxt[{a_,b_}]:={b,FromDigits[Reverse[IntegerDigits[a+b]]]}; Transpose[ NestList[ nxt,{0,1},40]][[1]] (* Harvey P. Dale, Jun 15 2013 *)
  • Python
    from itertools import islice
    def A014258_gen(): # generator of terms
        a, b = 0, 1
        yield 0
        while True:
            yield b
            a, b = b, int(str(a+b)[::-1])
    A014358_list = list(islice(A014258_gen(),20)) # Chai Wah Wu, Jan 15 2022

A014260 Iccanobif numbers: add a(n-1) to reversal of a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 52, 64, 89, 135, 233, 764, 1096, 1563, 8464, 12115, 16763, 67884, 104645, 153521, 699922, 825273, 1055269, 1427797, 11053298, 19030539, 108265550, 201768641, 257331442, 404198544, 648332296, 1094223700, 1786457546, 1859682447
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<2, n,
           a(n-1) +R(a(n-2)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    Clear[ Bif ]; Bif[ 0 ]=0; Bif[ 1 ]=1; Bif[ n_Integer ] := Bif[ n ]=Bif[ n-1 ]+Plus@@(IntegerDigits[ Bif[ n-2 ], 10 ]//(#*Array[ 10^#&, Length[ # ], 0 ])&); Array[ Bif, 40, 0 ]
    nxt[{a_,b_}]:={b,IntegerReverse[a]+b}; NestList[nxt,{0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 04 2018 *)
  • PARI
    lista(nn) = my(v=vector(nn)); v[2]=1; for(n=3, nn, v[n] = v[n-1] + fromdigits(Vecrev(digits(v[n-2])))); v \\ Jinyuan Wang, Aug 01 2021

A102111 Iccanobirt numbers (1 of 15): a(n) = a(n-1) + a(n-2) + R(a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 99, 185, 328, 612, 1521, 2956, 4693, 8900, 20185, 33049, 53332, 144483, 291848, 459666, 1135955, 2443813, 4246722, 12285846, 19716010, 34278280, 118852511, 154192582, 281332336, 550783729, 1117407516, 2301424427
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Magma
    a:=[0,0,1];[n le 3 select a[n] else Self(n-1) + Self(n-2) + Seqint(Reverse(Intseq(Self(n-3)))):n in [1..36]]; // Marius A. Burtea, Oct 23 2019
  • Maple
    read("transforms") ;
    A102111 := proc(n)
        option remember;
        if n <= 2 then
            return op(n+1,[0,0,1]) ;
        else
            return procname(n-1)+procname(n-2)+digrev(procname(n-3)) ;
        end if;
    end proc:
    seq(A102111(n),n=0..20) ; # R. J. Mathar, Nov 17 2012
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=a[n-1]+a[n-2]+R[a[n-3]];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,IntegerReverse[a]+b+c}; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Jul 18 2023 *)
  • Python
    def R(n):
      n_str = str(n)
      reversedn_str = n_str[::-1]
      reversedn = int(reversedn_str)
      return reversedn
    def A(n):
      if n == 0:
        return 0
      elif n == 1:
        return 0
      elif n == 2:
        return 1
      elif n >= 3:
        return A(n-1)+A(n-2)+R(A(n-3))
    for i in range(0,20):
      print(A(i)) # Dylan Delgado, Oct 23 2019
    

Formula

A004086(a(n)) = A102119(n).

A102125 Iccanobirt numbers (15 of 15): a(n) = R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 44, 18, 941, 472, 405, 729, 5071, 6313, 8675, 90601, 31591, 9853, 11733, 31865, 31149, 736481, 365533, 313416, 3154311, 9834802, 5123383, 7112507, 12796921, 35055832, 19867834, 56610708, 906334841, 561210372
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, binomial(n,2),
          R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+R[a[n-2]]+R[a[n-3]]];Table[a[n], {n, 0, 40}]
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; nxt[{a_, b_, c_}] := {b, c, rev[rev[a] + rev[b] + rev[c]]}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Mar 20 2015 *)
    nxt[{a_,b_,c_}]:=With[{ir=IntegerReverse},{b,c,ir[ir[a]+ir[b]+ir[c]]}]; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Jul 22 2025 *)

Formula

a(n) = A004086(A102117(n)).

A069638 "Sorted" sum of two previous terms, beginning with 0,1. "Sorted" means to sort the digits of the sum in ascending order.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 12, 25, 37, 26, 36, 26, 26, 25, 15, 4, 19, 23, 24, 47, 17, 46, 36, 28, 46, 47, 39, 68, 17, 58, 57, 115, 127, 224, 135, 359, 449, 88, 357, 445, 28, 347, 357, 47, 44, 19, 36, 55, 19, 47, 66, 113, 179, 229, 48, 277, 235, 125, 36, 116, 125, 124, 249, 337
Offset: 0

Views

Author

Gil Broussard, Jan 16 2004

Keywords

Comments

The maximum value in this sequence is 667. After the 75th term, the next 120 terms (a(76) - a(195)) repeat as a group infinitely.

Examples

			a(8)=12 because a(7)+a(6)=13+8=21 and the digits of 21 sorted in ascending order = 12.
Also a(17)=4 because a(16)+a(15)=15+25=40 and the digits of 40 sorted in ascending order = 04, or just 4;
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n, parse(cat(
          sort(convert(a(n-1)+a(n-2), base, 10))[])))
        end:
    seq(a(n), n=0..77);  # Alois P. Heinz, Aug 31 2022
  • Mathematica
    a[0]:=0
    a[1]:=1
    a[n_] := a[n]=FromDigits[Sort[IntegerDigits[a[n-1]+a[n-2]]]] (* Peter J. C. Moses, Feb 08 2014 *)
    nxt[{a_,b_}]:={b,FromDigits[Sort[IntegerDigits[a+b]]]}; NestList[nxt,{0,1},70][[All,1]] (* Harvey P. Dale, Jul 27 2020 *)
  • Python
    a, terms = [0, 1], 66
    [a.append(int("".join(sorted(str(a[-2]+a[-1]))))) for n in range(2, terms)]
    print(a) # Michael S. Branicky, Aug 31 2022

Formula

a(n) = SORT[a(n-1) + a(n-2)].

A014259 Iccanobif numbers: add reversal of a(n-1) to a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 39, 106, 640, 152, 891, 350, 944, 799, 1941, 2290, 2863, 5972, 5658, 14537, 79199, 113734, 516510, 129349, 1460431, 1469990, 2460072, 4170632, 4820786, 11040916, 66724797, 90783682, 95363506, 151320041, 235386657, 908003573, 610687466
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<2, n,
           R(a(n-1)) +a(n-2))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = FromDigits[ Reverse[ IntegerDigits[ a[n - 1]]]] + a[n - 2]; Table[ a[n], {n, 0, 36}] (* Robert G. Wilson v *)
Showing 1-10 of 35 results. Next