cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A101764 Iccanobif semiprime indices: Indices of semiprime numbers in A014258.

Original entry on oeis.org

8, 10, 13, 17, 23, 26, 28, 29, 31, 39, 42, 53, 55, 56, 73, 83, 94, 98, 101, 113, 114, 115, 121, 167, 217, 255, 266, 326, 327, 333, 367, 389, 397, 404, 409, 423, 425, 467, 497, 570, 631, 639, 749, 761
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 815, 862, 943, 1013, 1106, 1204, 1319, 1398, 1419, 1554, 1669, 1729, 1762, 1801, 1847, 1874, 1930, 1977, and 2123. It might or might not include 791, 927, 1022, 1027, 1110, 1129, 1307, 1558, 1662, 1694, 1723, 1747, 1850, 1934, 1954, 1978, 2014, 2069, and 2077, but the required factoring proved rather difficult. There are no further terms below 2123. - Lucas A. Brown, Nov 12 2022

Crossrefs

Programs

Extensions

Missing 367 inserted and new terms 570-761 added by Lucas A. Brown, Nov 12 2022

A101760 Iccanobif prime indices: indices of prime numbers in A014258.

Original entry on oeis.org

3, 4, 5, 7, 9, 18, 19, 21, 22, 25, 27, 47, 97, 107, 154, 186, 205, 303, 363, 1385, 1515, 1546, 2642, 2795, 2825, 3193
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

No more terms through 10^4.

Crossrefs

A350779 Indices where Iccanobif numbers of the form A014258 decrease, i.e., numbers k such that A014258(k) < A014258(k-1).

Original entry on oeis.org

10, 17, 19, 20, 21, 23, 28, 31, 32, 39, 41, 45, 50, 55, 58, 60, 66, 70, 73, 75, 78, 83, 84, 90, 92, 95, 100, 101, 103, 105, 113, 114, 117, 123, 126, 129, 131, 140, 143, 147, 149, 151, 153, 155, 157, 163, 166, 167, 174, 176, 184, 197, 200, 206, 208, 210, 215, 217
Offset: 1

Views

Author

Chai Wah Wu, Jan 15 2022

Keywords

Examples

			A014258(17) = 715297 < 739401 = A014258(16), so 17 is a term.
		

Crossrefs

Cf. A014258.

Programs

  • Mathematica
    Flatten[Position[s,#]&/@Select[s=NestList[{Last@#,FromDigits@Reverse@IntegerDigits@Total@#}&,{0,1},220],!OrderedQ@#&]]  (* Giorgos Kalogeropoulos, Jan 16 2022 *)
  • Python
    from itertools import count, islice
    def A350079_gen(): # generator of terms
        a, b = 0, 1
        for n in count(1):
            if b < a:
                yield n
            a, b = b, int(str(a+b)[::-1])
    A350079_list = list(islice(A350079_gen(),20))

A001129 Iccanobif numbers: reverse digits of two previous terms and add.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 39, 124, 514, 836, 1053, 4139, 12815, 61135, 104937, 792517, 1454698, 9679838, 17354310, 9735140, 1760750, 986050, 621360, 113815, 581437, 1252496, 7676706, 13019288, 94367798, 178067380, 173537220, 106496242, 265429972, 522619163
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a001129 n = a001129_list !! n
    a001129_list = 0 : 1 : zipWith (+) iccanobifs (tail iccanobifs) where iccanobifs = map a004086 a001129_list
    -- Reinhard Zumkeller, Jan 01 2012
    
  • Magma
    a:=[0,1];[n le 2 select a[n] else Seqint(Reverse(Intseq(Self(n-1)))) + Seqint(Reverse(Intseq(Self(n-2)))):n in [1..35]]; // Marius A. Burtea, Oct 23 2019
  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<2, n,
           R(a(n-1)) +R(a(n-2)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    Clear[ BIF ]; BIF[ 0 ]=0; BIF[ 1 ]=1; BIF[ n_Integer ] := BIF[ n ]=Plus@@Map[ Plus@@(#*Array[ 10^#&, Length[ # ], 0 ])&, Map[ IntegerDigits, {BIF[ n-1 ], BIF[ n-2 ]} ] ]; Array[ BIF, 40, 0 ]
    nxt[{a_,b_}]:={b,Total[FromDigits/@Reverse/@IntegerDigits[ {a,b}]]}; Transpose[NestList[nxt,{0,1},40]][[1]] (* Harvey P. Dale, Jun 22 2011 *)
    nxt[{a_,b_}]:={b,Total[IntegerReverse[{a,b}]]}; NestList[nxt,{0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 07 2019 *)
  • PARI
    A001129(n,a=0,b=1)={ n || return; while( n-->0, b=A004086(a)+A004086(a=b)); b }
    
  • Python
    A001129_list, r1, r2 = [0,1], 1, 0
    for _ in range(10**2):
        l, r2 = r1+r2, r1
        r1 = int(str(l)[::-1])
        A001129_list.append(l) # Chai Wah Wu, Jan 03 2015
    

A014260 Iccanobif numbers: add a(n-1) to reversal of a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 52, 64, 89, 135, 233, 764, 1096, 1563, 8464, 12115, 16763, 67884, 104645, 153521, 699922, 825273, 1055269, 1427797, 11053298, 19030539, 108265550, 201768641, 257331442, 404198544, 648332296, 1094223700, 1786457546, 1859682447
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<2, n,
           a(n-1) +R(a(n-2)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    Clear[ Bif ]; Bif[ 0 ]=0; Bif[ 1 ]=1; Bif[ n_Integer ] := Bif[ n ]=Bif[ n-1 ]+Plus@@(IntegerDigits[ Bif[ n-2 ], 10 ]//(#*Array[ 10^#&, Length[ # ], 0 ])&); Array[ Bif, 40, 0 ]
    nxt[{a_,b_}]:={b,IntegerReverse[a]+b}; NestList[nxt,{0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 04 2018 *)
  • PARI
    lista(nn) = my(v=vector(nn)); v[2]=1; for(n=3, nn, v[n] = v[n-1] + fromdigits(Vecrev(digits(v[n-2])))); v \\ Jinyuan Wang, Aug 01 2021

A102111 Iccanobirt numbers (1 of 15): a(n) = a(n-1) + a(n-2) + R(a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 99, 185, 328, 612, 1521, 2956, 4693, 8900, 20185, 33049, 53332, 144483, 291848, 459666, 1135955, 2443813, 4246722, 12285846, 19716010, 34278280, 118852511, 154192582, 281332336, 550783729, 1117407516, 2301424427
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Magma
    a:=[0,0,1];[n le 3 select a[n] else Self(n-1) + Self(n-2) + Seqint(Reverse(Intseq(Self(n-3)))):n in [1..36]]; // Marius A. Burtea, Oct 23 2019
  • Maple
    read("transforms") ;
    A102111 := proc(n)
        option remember;
        if n <= 2 then
            return op(n+1,[0,0,1]) ;
        else
            return procname(n-1)+procname(n-2)+digrev(procname(n-3)) ;
        end if;
    end proc:
    seq(A102111(n),n=0..20) ; # R. J. Mathar, Nov 17 2012
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=a[n-1]+a[n-2]+R[a[n-3]];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,IntegerReverse[a]+b+c}; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Jul 18 2023 *)
  • Python
    def R(n):
      n_str = str(n)
      reversedn_str = n_str[::-1]
      reversedn = int(reversedn_str)
      return reversedn
    def A(n):
      if n == 0:
        return 0
      elif n == 1:
        return 0
      elif n == 2:
        return 1
      elif n >= 3:
        return A(n-1)+A(n-2)+R(A(n-3))
    for i in range(0,20):
      print(A(i)) # Dylan Delgado, Oct 23 2019
    

Formula

A004086(a(n)) = A102119(n).

A102125 Iccanobirt numbers (15 of 15): a(n) = R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 44, 18, 941, 472, 405, 729, 5071, 6313, 8675, 90601, 31591, 9853, 11733, 31865, 31149, 736481, 365533, 313416, 3154311, 9834802, 5123383, 7112507, 12796921, 35055832, 19867834, 56610708, 906334841, 561210372
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, binomial(n,2),
          R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+R[a[n-2]]+R[a[n-3]]];Table[a[n], {n, 0, 40}]
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; nxt[{a_, b_, c_}] := {b, c, rev[rev[a] + rev[b] + rev[c]]}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Mar 20 2015 *)
    nxt[{a_,b_,c_}]:=With[{ir=IntegerReverse},{b,c,ir[ir[a]+ir[b]+ir[c]]}]; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Jul 22 2025 *)

Formula

a(n) = A004086(A102117(n)).

A014259 Iccanobif numbers: add reversal of a(n-1) to a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 39, 106, 640, 152, 891, 350, 944, 799, 1941, 2290, 2863, 5972, 5658, 14537, 79199, 113734, 516510, 129349, 1460431, 1469990, 2460072, 4170632, 4820786, 11040916, 66724797, 90783682, 95363506, 151320041, 235386657, 908003573, 610687466
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<2, n,
           R(a(n-1)) +a(n-2))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = FromDigits[ Reverse[ IntegerDigits[ a[n - 1]]]] + a[n - 2]; Table[ a[n], {n, 0, 36}] (* Robert G. Wilson v *)

A004091 Fibonacci numbers written backwards.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 31, 12, 43, 55, 98, 441, 332, 773, 16, 789, 7951, 4852, 1814, 5676, 64901, 11771, 75682, 86364, 52057, 393121, 814691, 118713, 922415, 40238, 9626431, 9038712, 8754253, 7882075, 5647229, 25303941, 71875142, 96188093, 68954236, 551433201, 141085561, 692419762, 734494334, 337804107, 713094311, 3091136381, 3705121792
Offset: 0

Views

Author

Keywords

Comments

Or, Fibonacci numbers reversed.

Crossrefs

Programs

  • Haskell
    a004091 = a004086 . a000045  -- Reinhard Zumkeller, Mar 08 2013
    
  • Magma
    [Seqint(Reverse(Intseq(Fibonacci(n)))): n in [0..50]]; // Vincenzo Librandi, Jan 17 2016
    
  • Maple
    a:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(
             ""||((<<0|1>, <1|1>>^n)[1,2])):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 09 2015
  • Mathematica
    FromDigits[Reverse[IntegerDigits[#]]]&/@Fibonacci[Range[50]] (* Harvey P. Dale, Jun 10 2011 *)
    IntegerReverse[Fibonacci[Range[0,50]]] (* Harvey P. Dale, Jun 21 2024 *)
  • PARI
    a(n) = fromdigits(Vecrev(digits(fibonacci(n)))); \\ Michel Marcus, Mar 25 2024

Formula

a(n) = A004086(A000045(n)). - Reinhard Zumkeller, Mar 08 2013

A102112 Iccanobirt numbers (2 of 15): a(n) = a(n-1) + R(a(n-2)) + a(n-3), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 62, 117, 167, 940, 1818, 2034, 11155, 17275, 74420, 142846, 162568, 885229, 1893336, 2978492, 10197702, 15039830, 38797423, 52888176, 100407789, 206394037, 1246986214, 2077887605, 6411178063, 12726051979
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=a[n-1]+R[a[n-2]]+a[n-3];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,a+FromDigits[Reverse[IntegerDigits[b]]]+c}; Transpose[ NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Jul 29 2013 *)

Formula

A004086(a(n)) = A102120(n).
Showing 1-10 of 31 results. Next