cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A371508 Integers k such that A000045(k) + A004091(k) is prime (A000040).

Original entry on oeis.org

1, 2, 81, 311, 6887, 9691, 296959
Offset: 1

Views

Author

Gonzalo Martínez, Mar 25 2024

Keywords

Examples

			1 is a term since Fibonacci(1) = 1 plus its reversal is 1 + 1 = 2 which is prime (and for the same reason 2 is a term).
81 is a term since Fibonacci(81) = 37889062373143906 plus its reversal is 98823199699242779 which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], PrimeQ[(f = Fibonacci[#]) + IntegerReverse[f]] &] (* Amiram Eldar, Mar 25 2024 *)

Extensions

a(7) from Michael S. Branicky, Jan 07 2025

A004170 Reversals of Fibonacci numbers (sorted).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 12, 16, 31, 43, 55, 98, 332, 441, 773, 789, 1814, 4852, 5676, 7951, 11771, 40238, 52057, 64901, 75682, 86364, 118713, 393121, 814691, 922415, 5647229, 7882075, 8754253, 9038712, 9626431
Offset: 0

Views

Author

Keywords

Comments

The smallest Fibonacci number with 1, 2, 3,... trailing zeros is F(15), F(150), F(750), F(7500), F(75000),.... This provides an idea of how many digits may be "lost" by reversal. - R. J. Mathar, Mar 11 2013

Crossrefs

Programs

  • Haskell
    import Data.Set (fromList, deleteFindMin, insert)
    a004170 n = a004170_list !! n
    a004170_list = 0 : 1 : f (fromList us) vs where
       f s (x:xs) = m : f (insert x s') xs
         where (m,s') = deleteFindMin s
       (us,vs) = splitAt 120 $ drop 2 a004091_list
    -- Reinhard Zumkeller, Mar 09 2013
  • Mathematica
    Sort[FromDigits[Reverse[IntegerDigits[#]]]&/@Fibonacci[Range[0,40]]] (* Harvey P. Dale, Jun 17 2011 *)
    IntegerReverse[Fibonacci[Range[0,40]]]//Sort (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 02 2019 *)

A133022 Product of n-th Fibonacci number and n-th Fibonacci number written backwards.

Original entry on oeis.org

0, 1, 1, 4, 9, 25, 64, 403, 252, 1462, 3025, 8722, 63504, 77356, 291421, 9760, 778743, 12697747, 12537568, 7584334, 38398140, 710406346, 208476181, 2168819074, 4004525952, 3905576425, 47722137553, 160019976838, 37728297243, 474332543035, 33479625520
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			403 = 13*31.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> (s-> f*parse(cat(s[-i]$i=1..length(s))))(
              ""||f))(((<<0|1>, <1|1>>^n)[1, 2])):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 06 2018
  • Mathematica
    #*FromDigits[Reverse[IntegerDigits[#]]]&/@Fibonacci[Range[0,40]] (* Harvey P. Dale, Oct 12 2012 *)

Formula

a(n) = A000045(n) * A004091(n).

Extensions

Corrected and extended by Harvey P. Dale, Oct 12 2012

A062018 a(n) = n^n written backwards.

Original entry on oeis.org

1, 4, 72, 652, 5213, 65664, 345328, 61277761, 984024783, 1, 116076113582, 6528440016198, 352295601578203, 61085552860021111, 573958083098398734, 61615590737044764481, 771467633688162042728, 42457573569257080464393
Offset: 1

Views

Author

Amarnath Murthy, Jun 01 2001

Keywords

Examples

			a(5) = 5213, as 5^5 = 3125.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 50 do a := convert(n^n,base,10):b := add(10^(nops(a)- i)*a[i],i=1..nops(a)):printf(`%d,`,b); od:
  • Mathematica
    Table[IntegerReverse[n^n],{n,20}] (* Harvey P. Dale, Jul 31 2022 *)
  • PARI
    a(n) = { fromdigits(Vecrev(digits( n^n )))} \\ Harry J. Smith, Jul 29 2009

Formula

a(n) = A004086(n^n).

Extensions

More terms from Jason Earls and Vladeta Jovovic, Jun 01 2001

A215649 Reversals of tribonacci numbers (sorted).

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 18, 31, 42, 44, 405, 472, 729, 941, 5071, 6313, 8675, 9853, 21066, 31591, 90601, 447014, 514121, 674557, 713322, 770074, 4606468, 7359831, 7575552, 8089735, 19520951, 52494292, 69005989, 106799181, 474396516, 777547433, 2586342311, 3016782802
Offset: 0

Views

Author

Jonathan Vos Post, Mar 09 2013

Keywords

Comments

This is to A004170 as tribonacci numbers A000073 are to Fibonacci numbers A000045. Note that tribonacci(20) = 35890 is, upon reversal, 09853, then the leading 0 is truncated, making the 5-digit number into the 4-digit number 9853. Similarly, R(4700770) = 770074.

Examples

			A000073(n) for n = 7, 8, 9 = 13, 24, 44, 81. Reversed, those are 31, 42, 44, 18, and sorted that is 18, 31, 42, 44.
		

Crossrefs

Programs

  • Mathematica
    Sort[FromDigits[Reverse[IntegerDigits[#]]]&/@LinearRecurrence[{1,1,1},{0,0,1,1},40]] (* Harvey P. Dale, Nov 22 2015 *)

A267551 Lucas numbers written backwards.

Original entry on oeis.org

2, 1, 3, 4, 7, 11, 81, 92, 74, 67, 321, 991, 223, 125, 348, 4631, 7022, 1753, 8775, 9439, 72151, 67442, 30693, 97046, 286301, 167761, 344172, 402934, 746017, 1589411, 8940681, 9430103, 7480784, 6911887, 34025721, 93233602, 28258333, 12581045, 30830478
Offset: 0

Views

Author

Vincenzo Librandi, Jan 17 2016

Keywords

Examples

			81 is in the sequence because 7 + 11 = 18, which is 81 written backwards.
		

Crossrefs

Programs

  • Magma
    [Seqint(Reverse(Intseq(Lucas(n)))): n in [0..50]];
    
  • Mathematica
    FromDigits[Reverse[IntegerDigits[#]]]&/@LucasL[Range[0, 50]]
  • PARI
    a(n) = eval(concat(Vecrev(Str(fibonacci(n+1)+fibonacci(n-1))))); \\ Altug Alkan, Jan 17 2016

Formula

a(n) = A004086(A000032(n)).

A382082 F(k) such that F(k) + (F(k) reversed) is a palindrome, where F(k) is a Fibonacci number.

Original entry on oeis.org

0, 1, 2, 3, 13, 21, 34, 144, 233, 610, 4181, 832040, 102334155, 1134903170, 20365011074, 12200160415121876738
Offset: 1

Views

Author

Vincenzo Librandi, Mar 21 2025

Keywords

Comments

Conjecture: The sequence appears to be finite.
The next term, F(k), has k > 3*10^5, if it exists. - Amiram Eldar, Mar 21 2025

Examples

			144 is in the sequence because 144 + 441 = 585 is a palindrome.
		

Crossrefs

Intersection of A000045 and A015976.

Programs

  • Magma
    Rev := func;
    [0] cat  [Fibonacci(n): n in [2..2*10^4] | q eq Rev(q) where q is Fibonacci(n)+Rev(Fibonacci(n))];
  • Mathematica
    DeleteDuplicates@ Select[Fibonacci[Range[0, 100]], PalindromeQ[# + IntegerReverse[#]] &] (* Amiram Eldar, Mar 21 2025 *)
Showing 1-7 of 7 results.