cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A101765 Iccanobif semiprime indices: Indices of semiprime numbers in A014259.

Original entry on oeis.org

8, 9, 15, 16, 18, 22, 32, 37, 46, 53, 61, 62, 64, 79, 82, 106, 121, 129, 149, 153, 229, 241, 266, 301, 381, 411, 502
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 742, 987, 1147, 1246, 1337, 1373, 1454, 1493, 1537, 1835, 1967, and 2265. It might or might not include 622, 630, 647, 817, 1247, 1402, 1422, 1477, 1649, 1781, 1818, 1867, 1874, and 2115, but the required factoring proved rather difficult. There are no further terms below 2265. - Lucas A. Brown, Nov 12 2022

Crossrefs

Extensions

a(27) from Lucas A. Brown, Nov 12 2022

A101761 Iccanobif prime indices: Indices of prime numbers in A014259.

Original entry on oeis.org

3, 4, 5, 7, 21, 35, 97, 830, 947, 2627
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

No more terms through 10^4.

Crossrefs

A001129 Iccanobif numbers: reverse digits of two previous terms and add.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 39, 124, 514, 836, 1053, 4139, 12815, 61135, 104937, 792517, 1454698, 9679838, 17354310, 9735140, 1760750, 986050, 621360, 113815, 581437, 1252496, 7676706, 13019288, 94367798, 178067380, 173537220, 106496242, 265429972, 522619163
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a001129 n = a001129_list !! n
    a001129_list = 0 : 1 : zipWith (+) iccanobifs (tail iccanobifs) where iccanobifs = map a004086 a001129_list
    -- Reinhard Zumkeller, Jan 01 2012
    
  • Magma
    a:=[0,1];[n le 2 select a[n] else Seqint(Reverse(Intseq(Self(n-1)))) + Seqint(Reverse(Intseq(Self(n-2)))):n in [1..35]]; // Marius A. Burtea, Oct 23 2019
  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<2, n,
           R(a(n-1)) +R(a(n-2)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    Clear[ BIF ]; BIF[ 0 ]=0; BIF[ 1 ]=1; BIF[ n_Integer ] := BIF[ n ]=Plus@@Map[ Plus@@(#*Array[ 10^#&, Length[ # ], 0 ])&, Map[ IntegerDigits, {BIF[ n-1 ], BIF[ n-2 ]} ] ]; Array[ BIF, 40, 0 ]
    nxt[{a_,b_}]:={b,Total[FromDigits/@Reverse/@IntegerDigits[ {a,b}]]}; Transpose[NestList[nxt,{0,1},40]][[1]] (* Harvey P. Dale, Jun 22 2011 *)
    nxt[{a_,b_}]:={b,Total[IntegerReverse[{a,b}]]}; NestList[nxt,{0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 07 2019 *)
  • PARI
    A001129(n,a=0,b=1)={ n || return; while( n-->0, b=A004086(a)+A004086(a=b)); b }
    
  • Python
    A001129_list, r1, r2 = [0,1], 1, 0
    for _ in range(10**2):
        l, r2 = r1+r2, r1
        r1 = int(str(l)[::-1])
        A001129_list.append(l) # Chai Wah Wu, Jan 03 2015
    

A014258 Iccanobif numbers: add previous two terms and reverse the sum.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 31, 93, 421, 415, 638, 3501, 9314, 51821, 53116, 739401, 715297, 8964541, 8389769, 1345371, 415379, 570671, 50689, 63126, 518311, 734185, 6942521, 6076767, 88291031, 89776349, 83760871, 22735371, 242694601, 279924562, 361916225, 787048146
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(transforms); f:=proc(n) option remember; if n <= 1 then n else digrev(f(n-1)+f(n-2)); fi; end; [seq(f(n),n=0..50)];
  • Mathematica
    Clear[ BiF ]; BiF[ 0 ]=0; BiF[ 1 ]=1; BiF[ n_Integer ] := BiF[ n ]=Plus@@(IntegerDigits[ BiF[ n-2 ]+BiF[ n-1 ], 10 ]//(#*Array[ 10^#&, Length[ # ], 0 ])&); Array[ BiF, 40, 0 ]
    nxt[{a_,b_}]:={b,FromDigits[Reverse[IntegerDigits[a+b]]]}; Transpose[ NestList[ nxt,{0,1},40]][[1]] (* Harvey P. Dale, Jun 15 2013 *)
  • Python
    from itertools import islice
    def A014258_gen(): # generator of terms
        a, b = 0, 1
        yield 0
        while True:
            yield b
            a, b = b, int(str(a+b)[::-1])
    A014358_list = list(islice(A014258_gen(),20)) # Chai Wah Wu, Jan 15 2022

A014260 Iccanobif numbers: add a(n-1) to reversal of a(n-2).

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 52, 64, 89, 135, 233, 764, 1096, 1563, 8464, 12115, 16763, 67884, 104645, 153521, 699922, 825273, 1055269, 1427797, 11053298, 19030539, 108265550, 201768641, 257331442, 404198544, 648332296, 1094223700, 1786457546, 1859682447
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<2, n,
           a(n-1) +R(a(n-2)))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    Clear[ Bif ]; Bif[ 0 ]=0; Bif[ 1 ]=1; Bif[ n_Integer ] := Bif[ n ]=Bif[ n-1 ]+Plus@@(IntegerDigits[ Bif[ n-2 ], 10 ]//(#*Array[ 10^#&, Length[ # ], 0 ])&); Array[ Bif, 40, 0 ]
    nxt[{a_,b_}]:={b,IntegerReverse[a]+b}; NestList[nxt,{0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 04 2018 *)
  • PARI
    lista(nn) = my(v=vector(nn)); v[2]=1; for(n=3, nn, v[n] = v[n-1] + fromdigits(Vecrev(digits(v[n-2])))); v \\ Jinyuan Wang, Aug 01 2021

A101763 Iccanobif semiprime indices: Indices of semiprime numbers in A001129.

Original entry on oeis.org

8, 10, 15, 17, 35, 37, 47, 53, 62, 66, 74, 79, 110, 127, 146, 214, 231, 241, 242, 245, 250, 277, 293, 302, 343, 485, 525, 550, 599, 638, 687, 733, 805, 814
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 881, 946, 954, 1086, 1753, and 1771. It might or might not include 838, 849, 1073, 1667, 1741, 1870, 2155, and 2478, but the required factoring proved rather difficult. There are no further terms below 2478. - Lucas A. Brown, Nov 19 2022

Crossrefs

Extensions

Missing 302 inserted and 525 added by Sean A. Irvine, Apr 29 2022
a(28)-a(34) from Lucas A. Brown, Nov 21 2022

A101764 Iccanobif semiprime indices: Indices of semiprime numbers in A014258.

Original entry on oeis.org

8, 10, 13, 17, 23, 26, 28, 29, 31, 39, 42, 53, 55, 56, 73, 83, 94, 98, 101, 113, 114, 115, 121, 167, 217, 255, 266, 326, 327, 333, 367, 389, 397, 404, 409, 423, 425, 467, 497, 570, 631, 639, 749, 761
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 815, 862, 943, 1013, 1106, 1204, 1319, 1398, 1419, 1554, 1669, 1729, 1762, 1801, 1847, 1874, 1930, 1977, and 2123. It might or might not include 791, 927, 1022, 1027, 1110, 1129, 1307, 1558, 1662, 1694, 1723, 1747, 1850, 1934, 1954, 1978, 2014, 2069, and 2077, but the required factoring proved rather difficult. There are no further terms below 2123. - Lucas A. Brown, Nov 12 2022

Crossrefs

Programs

Extensions

Missing 367 inserted and new terms 570-761 added by Lucas A. Brown, Nov 12 2022

A101766 Iccanobif semiprime indices: Indices of semiprime numbers in A014260.

Original entry on oeis.org

8, 16, 18, 21, 26, 38, 42, 44, 49, 54, 55, 57, 61, 67, 77, 78, 115, 123, 134, 145, 151, 154, 202, 218, 249, 286, 349, 403, 498, 539, 647
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

This sequence also includes 790, 1161, 1347, 1418, 1595, 1761, and 2018. It might or might not include 769, 1394, 1795, 1983, 2093, 2178, but the required factoring proved rather difficult. There are no further terms below 2178. - Lucas A. Brown, Nov 12 2022

Crossrefs

Programs

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 01 2021
a(31) from Lucas A. Brown, Nov 12 2022

A101762 Iccanobif prime indices: Indices of prime numbers in A014260.

Original entry on oeis.org

3, 4, 5, 7, 11, 13, 19, 22, 25, 30, 39, 71, 81, 98, 1041, 2942, 4377, 10410
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 15 2004

Keywords

Comments

No more terms through 11000.

Crossrefs

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 02 2021
Showing 1-9 of 9 results.