cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A102131 Iccanobirt prime indices (1 of 15): Indices of prime numbers in A102111.

Original entry on oeis.org

4, 6, 7, 19, 30, 175, 265, 591, 1124, 1369, 4359, 10935, 20422, 20559, 26993
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 8000.
a(16) > 50000. - Robert Price, Nov 07 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[n - 1] + a[n - 2] + IntegerReverse[a[n - 3]];
    a[0] = 0; a[1] = 0; a[2] = 1;
    Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)

Formula

A102111(a(n)) = A102151(n).

Extensions

a(12)-a(15) from Robert Price, Nov 07 2018

A102171 Iccanobirt semiprime indices (1 of 15): Indices of semiprime numbers in A102111.

Original entry on oeis.org

5, 11, 24, 33, 57, 64, 71, 72, 116, 126, 141, 174, 210, 311, 334, 370, 441, 480, 574
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

A102111(a(n)) = A102191(n).

Extensions

a(13) from Robert Price, Nov 07 2018
Offset changed to 1 and a(14)-a(19) from Jinyuan Wang, Jul 31 2021

A102151 Iccanobirt primes (1 of 15): Prime numbers in A102111.

Original entry on oeis.org

2, 7, 13, 33049, 118852511, 4737081270498735525597185686764838592126526518160799, 1077332507131387702854919470217222614007309564248616024722926341483527602546317
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

a(n) = A102111(A102131(n)).

A102191 Iccanobirt semiprimes (1 of 15): Semiprime numbers in A102111.

Original entry on oeis.org

4, 185, 1135955, 550783729, 10755767351826313, 885150880428474601, 145045760838001005739, 276700469046311728441, 17906534239981723909956235510218343, 23104799226903739899579090259021365554, 504198286800075916303995704410366363448429, 2363732899718211729861685511671459865604449872085443
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

a(n) = A102111(A102171(n)).

Extensions

Offset changed to 1 and more terms from Jinyuan Wang, Jul 31 2021

A102125 Iccanobirt numbers (15 of 15): a(n) = R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 44, 18, 941, 472, 405, 729, 5071, 6313, 8675, 90601, 31591, 9853, 11733, 31865, 31149, 736481, 365533, 313416, 3154311, 9834802, 5123383, 7112507, 12796921, 35055832, 19867834, 56610708, 906334841, 561210372
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, binomial(n,2),
          R(R(a(n-1)) + R(a(n-2)) + R(a(n-3))))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+R[a[n-2]]+R[a[n-3]]];Table[a[n], {n, 0, 40}]
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; nxt[{a_, b_, c_}] := {b, c, rev[rev[a] + rev[b] + rev[c]]}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Mar 20 2015 *)
    nxt[{a_,b_,c_}]:=With[{ir=IntegerReverse},{b,c,ir[ir[a]+ir[b]+ir[c]]}]; NestList[nxt,{0,0,1},40][[;;,1]] (* Harvey P. Dale, Jul 22 2025 *)

Formula

a(n) = A004086(A102117(n)).

A102112 Iccanobirt numbers (2 of 15): a(n) = a(n-1) + R(a(n-2)) + a(n-3), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 62, 117, 167, 940, 1818, 2034, 11155, 17275, 74420, 142846, 162568, 885229, 1893336, 2978492, 10197702, 15039830, 38797423, 52888176, 100407789, 206394037, 1246986214, 2077887605, 6411178063, 12726051979
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=a[n-1]+R[a[n-2]]+a[n-3];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,a+FromDigits[Reverse[IntegerDigits[b]]]+c}; Transpose[ NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Jul 29 2013 *)

Formula

A004086(a(n)) = A102120(n).

A102124 Iccanobirt numbers (14 of 15): a(n) = R(R(a(n-1)) + R(a(n-2)) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 44, 99, 581, 823, 216, 1251, 6592, 3964, 98, 47311, 72451, 99862, 73698, 789881, 684873, 171146, 8359081, 2855313, 6626115, 92901661, 80528542, 25591874, 127303561, 518156392, 14745484, 711014964, 521206301
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, binomial(n, 2),
           R(R(a(n-1)) + R(a(n-2)) + a(n-3)) )
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+R[a[n-2]]+a[n-3]];Table[a[n], {n, 0, 40}]

Formula

a(n) = A004086(A102116(n)).

A102113 Iccanobirt numbers (3 of 15): a(n) = a(n-1) + R(a(n-2)) + R(a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 24, 62, 135, 203, 760, 1593, 1962, 5980, 12622, 16208, 39724, 142606, 265660, 914694, 1587497, 2150478, 10594748, 27283111, 120773124, 216660897, 649176190, 1868619823, 2758358381, 6139199008, 11266906261
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, binomial(n, 2),
           a(n-1) + R(a(n-2)) + R(a(n-3)) )
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=a[n-1]+R[a[n-2]]+R[a[n-3]];Table[a[n], {n, 0, 40}]
    nxt[{a1_,a2_,a3_}]:={a2,a3,a3+FromDigits[Reverse[IntegerDigits[ a1]]]+ FromDigits[ Reverse[ IntegerDigits[a2]]]}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Oct 17 2012 *)
    nxt[{a_,b_,c_}]:={b,c,c+IntegerReverse[b]+IntegerReverse[a]}; NestList[ nxt,{0,0,1},40][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 10 2016 *)

Formula

A004086(a(n)) = A102121(n).

A102115 Iccanobirt numbers (5 of 15): a(n) = R(a(n-1)) + a(n-2) + R(a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 42, 44, 117, 779, 1138, 9801, 3204, 22135, 57415, 77633, 144214, 541549, 1123036, 7257201, 3095708, 21636315, 55486847, 104580673, 482935860, 247988412, 1073911003, 3317721397, 9220077878, 15106615327, 89503015162
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]]+a[n-2]+R[a[n-3]];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,Total[FromDigits/@Reverse/@IntegerDigits[ {a,c}]]+b}; Transpose[NestList[nxt,{0,0,1},35]][[1]] (* Harvey P. Dale, Dec 19 2011 *)

Formula

A004086(a(n)) = A102123(n).

A102116 Iccanobirt numbers (6 of 15): a(n) = R(a(n-1)) + R(a(n-2)) + a(n-3), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 13, 42, 62, 63, 104, 499, 1458, 9639, 18409, 101308, 903221, 943819, 1141966, 8512981, 9527388, 11871383, 55668051, 62931854, 72771964, 148399704, 517843422, 705114520, 398159926, 1173206822, 3621090124, 6895084900
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]]+R[a[n-2]]+a[n-3];Table[a[n], {n, 0, 40}]
    nxt[{a_,b_,c_}]:={b,c,FromDigits[Reverse[IntegerDigits[c]]]+ FromDigits[ Reverse[ IntegerDigits[b]]]+a}; Transpose[NestList[nxt,{0,0,1},40]][[1]] (* Harvey P. Dale, Oct 10 2014 *)

Formula

A004086(a(n)) = A102124(n).
Showing 1-10 of 18 results. Next