cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A102136 Iccanobirt prime indices (6 of 15): Indices of prime numbers in A102116.

Original entry on oeis.org

4, 6, 7, 12, 18, 20, 121, 2280, 2521, 8123, 9072, 12411, 27520
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

No more terms through 5000.
a(14) > 50000. - Robert Price, Nov 08 2018

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] =
       IntegerReverse[a[n - 1]] + IntegerReverse[a[n - 2]] + a[n - 3];
    a[0] = 0; a[1] = 0; a[2] = 1;
    Select[Range[0, 5000], PrimeQ[a[#]] &] (* Robert Price, Apr 10 2020 *)

Formula

A102116(a(n)) = A102156(n).

Extensions

a(10)-a(13) from Robert Price, Nov 08 2018

A102156 Iccanobirt primes (6 of 15): Prime numbers in A102116.

Original entry on oeis.org

2, 7, 13, 499, 943819, 8512981, 75957608989028496534122437859061890223391739
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Comments

Next term is too large to include.

Crossrefs

Formula

a(n) = A102116(A102136(n)).

Extensions

Offset changed to 1 by Jinyuan Wang, Aug 12 2021

A102176 Iccanobirt semiprime indices (6 of 15): Indices of semiprime numbers in A102116.

Original entry on oeis.org

5, 9, 15, 22, 38, 44, 67, 84, 148, 154, 162, 186, 189, 227, 228, 275, 280, 285, 298, 349
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

A102116(a(n)) = A102196(n).

Extensions

Offset changed to 1 and a(14)-a(20) from Jinyuan Wang, Aug 12 2021

A102196 Iccanobirt semiprimes (6 of 15): Semiprime numbers in A102116.

Original entry on oeis.org

4, 62, 18409, 11871383, 179446253401, 55485890942935, 8760033628867763034703, 77397904424005721701931992165, 117620535110076552813927714538053562565219253501365446, 57053214293426832976128532148240906999130287862801348038, 3084400686317650617690846479039523322373660299445872156438
Offset: 1

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 31 2004

Keywords

Crossrefs

Formula

a(n) = A102116(A102176(n)).

Extensions

Offset changed to 1 and more terms from Jinyuan Wang, Aug 12 2021

A102124 Iccanobirt numbers (14 of 15): a(n) = R(R(a(n-1)) + R(a(n-2)) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 42, 44, 99, 581, 823, 216, 1251, 6592, 3964, 98, 47311, 72451, 99862, 73698, 789881, 684873, 171146, 8359081, 2855313, 6626115, 92901661, 80528542, 25591874, 127303561, 518156392, 14745484, 711014964, 521206301
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, binomial(n, 2),
           R(R(a(n-1)) + R(a(n-2)) + a(n-3)) )
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[R[a[n-1]]+R[a[n-2]]+a[n-3]];Table[a[n], {n, 0, 40}]

Formula

a(n) = A004086(A102116(n)).

A102118 Iccanobirt numbers (8 of 15): a(n) = R(a(n-1) + a(n-2) + a(n-3)), where R is the digit reversal function A004086.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 31, 24, 26, 18, 86, 31, 531, 846, 8041, 8149, 63071, 16297, 71578, 649051, 629637, 6620531, 9129987, 55108361, 97885807, 551421261, 924514407, 5741283751, 9149127127, 58252941851, 92725334137, 511304721061
Offset: 0

Views

Author

Jonathan Vos Post and Ray Chandler, Dec 30 2004

Keywords

Comments

Digit reversal variation of tribonacci numbers A000073.
Inspired by Iccanobif numbers: A001129, A014258-A014260.

Crossrefs

Programs

  • Mathematica
    R[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Clear[a];a[0]=0;a[1]=0;a[2]=1;a [n_]:=a[n]=R[a[n-1]+a[n-2]+a[n-3]];Table[a[n], {n, 0, 40}]
    Transpose[NestList[{#[[2]],#[[3]],FromDigits[Reverse[IntegerDigits[Total[ #]]]]}&,{0,0,1},40]][[1]] (* Harvey P. Dale, Dec 04 2012 *)

Extensions

Incorrect formula removed by Georg Fischer, Dec 18 2020
Showing 1-6 of 6 results.